Skip to main content
Erschienen in: Experimental Mechanics 5/2020

02.03.2020 | Research paper

Acoustic Emission Source Localization with Generalized Regression Neural Network Based on Time Difference Mapping Method

verfasst von: Z. H. Liu, Q. L. Peng, X. Li, C. F. He, B. Wu

Erschienen in: Experimental Mechanics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Acoustic emission (AE) source localization is a powerful detection method. Time Difference Mapping (TDM) method is an effective method for detecting defects in complex structures. The core of this method is to search for a point with the minimum distance away from the verification point in the time difference database. In Traditional Time Difference Mapping (T-TDM) method and Improved Time Difference Mapping (I-TDM) method, the larger database and denser grids allow the higher localization accuracy. If the location points are not included in the database, the localization accuracy of the T-TDM and I-TDM methods will be greatly affected. To solve the above problems, a new AE source localization method, Generalized Regression Neural Network Based on Time Difference Mapping (GRNN-TDM), is proposed to improve the localization accuracy in the study. In the proposed method, the time difference data of the sensor path on all nodes in the time difference mapping are used as the training input data and the coordinates of grid nodes are used as the training output data. After continuous learning and training, the neural network model predicts its possible source location with the time difference data collected from the verification point. In this paper, the localization of AE sources with T-TDM, I-TDM and GRNN-TDM methods was studied in four composite plates with different fiber layers and an aluminum plate with holes. The localization results showed that the localization accuracy of the GRNN-TDM method was higher than that of T-TDM and I-TDM methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Achenbach JD (2009) Structural health monitoring–what is the prescription. Mech Res Commun 36(2):137–142CrossRef Achenbach JD (2009) Structural health monitoring–what is the prescription. Mech Res Commun 36(2):137–142CrossRef
2.
Zurück zum Zitat Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philosophical Trans Royal Soc London A: Mathematical, Phys Eng Sci 365(1851):303–315CrossRef Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philosophical Trans Royal Soc London A: Mathematical, Phys Eng Sci 365(1851):303–315CrossRef
3.
Zurück zum Zitat Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR. A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report, 2004 Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR. A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report, 2004
4.
Zurück zum Zitat Kaphle Manindra (2012) Analysis of acoustic emission data for accurate damage assessment for structural health monitoring applications. Ph.D. dissertation of Queensland University of Technology, Brisbane Kaphle Manindra (2012) Analysis of acoustic emission data for accurate damage assessment for structural health monitoring applications. Ph.D. dissertation of Queensland University of Technology, Brisbane
5.
Zurück zum Zitat Miller RK, Hill EK, Moore PO (2005) Non-destructive testing handbook, 3rd edn, vol. 6, Acoustic emission testing. American Society for Nondestructive Testing, Ohio Miller RK, Hill EK, Moore PO (2005) Non-destructive testing handbook, 3rd edn, vol. 6, Acoustic emission testing. American Society for Nondestructive Testing, Ohio
6.
Zurück zum Zitat Baxter MG, Pullin R, Holford KM et al (2007) Delta T source location for acoustic emission. Mech Syst Signal Process 21(3):1512–1520CrossRef Baxter MG, Pullin R, Holford KM et al (2007) Delta T source location for acoustic emission. Mech Syst Signal Process 21(3):1512–1520CrossRef
7.
8.
Zurück zum Zitat Tobias A (1976) Acoustic-emission source location in two dimensions by an array of three sensors. Non-Destructive Testing 9(1):9–12CrossRef Tobias A (1976) Acoustic-emission source location in two dimensions by an array of three sensors. Non-Destructive Testing 9(1):9–12CrossRef
9.
Zurück zum Zitat Mhamdi L, Schumacher T (2015) A comparison between time-of-arrival and novel phased array approaches to estimate acoustic emission source locations in a steel plate. J Nondestruct Eval 34(4):1–13CrossRef Mhamdi L, Schumacher T (2015) A comparison between time-of-arrival and novel phased array approaches to estimate acoustic emission source locations in a steel plate. J Nondestruct Eval 34(4):1–13CrossRef
10.
Zurück zum Zitat Kundu T, Nakatani H, Takeda N (2012) Acoustic source localization in anisotropic plates. Ultrasonics 52(6):740–746CrossRef Kundu T, Nakatani H, Takeda N (2012) Acoustic source localization in anisotropic plates. Ultrasonics 52(6):740–746CrossRef
11.
Zurück zum Zitat Nakatani H, Kundu T, Takeda N (2014) Improving accuracy of acoustic source localization in anisotropic plates. Ultrasonics 54(7):1776–1788CrossRef Nakatani H, Kundu T, Takeda N (2014) Improving accuracy of acoustic source localization in anisotropic plates. Ultrasonics 54(7):1776–1788CrossRef
12.
Zurück zum Zitat Kundu T, Yang X, Nakatani H, Takeda N (2015) A two-step hybrid technique for accurately localizing acoustic source in anisotropic structures without knowing their material properties. Ultrasonics 56:271–278CrossRef Kundu T, Yang X, Nakatani H, Takeda N (2015) A two-step hybrid technique for accurately localizing acoustic source in anisotropic structures without knowing their material properties. Ultrasonics 56:271–278CrossRef
13.
Zurück zum Zitat Park WH, Packo P, Kundu T (2017) Acoustic source localization in an anisotropic plate without knowing its material properties–a new approach. Ultrasonics 79:9–17CrossRef Park WH, Packo P, Kundu T (2017) Acoustic source localization in an anisotropic plate without knowing its material properties–a new approach. Ultrasonics 79:9–17CrossRef
14.
Zurück zum Zitat Sen N, Kundu T (2018) A new wave front shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties. Ultrasonics 87:20–32CrossRef Sen N, Kundu T (2018) A new wave front shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties. Ultrasonics 87:20–32CrossRef
15.
Zurück zum Zitat Sen N, Gawroński M, Packo P, Uhl T, Kundu T. Acoustic source localization in anisotropic plates without knowing their material properties: An experimental investigation. Proceedings of SPIE - The International Society for Optical Engineering, 2019, 10972: 1097224-1-19. Health Monitoring of Structural and Biological Systems XIII 2019, March 4, 2019 - March 7, 2019 Sen N, Gawroński M, Packo P, Uhl T, Kundu T. Acoustic source localization in anisotropic plates without knowing their material properties: An experimental investigation. Proceedings of SPIE - The International Society for Optical Engineering, 2019, 10972: 1097224-1-19. Health Monitoring of Structural and Biological Systems XIII 2019, March 4, 2019 - March 7, 2019
16.
Zurück zum Zitat Simone MED, Ciampa F, Boccardi S, MeoImpact M (2017) Source localisation in aerospace composite structures. Smart Mater Struct 26(12):125026CrossRef Simone MED, Ciampa F, Boccardi S, MeoImpact M (2017) Source localisation in aerospace composite structures. Smart Mater Struct 26(12):125026CrossRef
17.
Zurück zum Zitat Ebrahimkhanlou A, Salamone S (2017) Acoustic emission source localization in thin metallic plates: a single-sensor approach based on multimodal edge reflections. Ultrasonics 78:134–145CrossRef Ebrahimkhanlou A, Salamone S (2017) Acoustic emission source localization in thin metallic plates: a single-sensor approach based on multimodal edge reflections. Ultrasonics 78:134–145CrossRef
18.
Zurück zum Zitat Ebrahimkhanlou A, Dubuc B, Salamone S (2019) A generalizable deep learning framework for localizing and characterizing acoustic emission sources in riveted metallic panels. Mech Syst Signal Process 130:248–272CrossRef Ebrahimkhanlou A, Dubuc B, Salamone S (2019) A generalizable deep learning framework for localizing and characterizing acoustic emission sources in riveted metallic panels. Mech Syst Signal Process 130:248–272CrossRef
19.
Zurück zum Zitat Liu ZH, Dong TC, Peng QL, He CF, Li QF, Wu B (2018) AE source localization in a steel plate with the dispersive A0 mode based on the cross-correlation technique and time reversal principle. Mater Eval 76(3):371–382 Liu ZH, Dong TC, Peng QL, He CF, Li QF, Wu B (2018) AE source localization in a steel plate with the dispersive A0 mode based on the cross-correlation technique and time reversal principle. Mater Eval 76(3):371–382
20.
Zurück zum Zitat James C, John L, Mark S (1998) Neural network approach to locating acoustic emission sources in nondestructive evaluation. Proc Am Control Conference, Philadelphia:68–72 James C, John L, Mark S (1998) Neural network approach to locating acoustic emission sources in nondestructive evaluation. Proc Am Control Conference, Philadelphia:68–72
21.
Zurück zum Zitat Eaton MJ, Pullin R, Holford KM (2012) Acoustic emission source location in composite materials using Delta T mapping. Composites Part A 43(6):856–863CrossRef Eaton MJ, Pullin R, Holford KM (2012) Acoustic emission source location in composite materials using Delta T mapping. Composites Part A 43(6):856–863CrossRef
22.
Zurück zum Zitat Hsu NN, Breckenridge FR (1981) Characterization and calibration of acoustic emission sensors. Mater Eval 39:60–68 Hsu NN, Breckenridge FR (1981) Characterization and calibration of acoustic emission sensors. Mater Eval 39:60–68
23.
Zurück zum Zitat Scholey JW, Wisnom PD, Friswell MR, Pavier MI, Alika MJ (2009) MR, a generic technique for acoustic emission source location. J Acoust Emiss 27:291–298 Scholey JW, Wisnom PD, Friswell MR, Pavier MI, Alika MJ (2009) MR, a generic technique for acoustic emission source location. J Acoust Emiss 27:291–298
Metadaten
Titel
Acoustic Emission Source Localization with Generalized Regression Neural Network Based on Time Difference Mapping Method
verfasst von
Z. H. Liu
Q. L. Peng
X. Li
C. F. He
B. Wu
Publikationsdatum
02.03.2020
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 5/2020
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-020-00591-8

Weitere Artikel der Ausgabe 5/2020

Experimental Mechanics 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.