Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2013

01.03.2013

Activation Energy in Hot Forming and Recrystallization Models for Magnesium Alloy AZ31

verfasst von: Ivo Schindler, Petr Kawulok, Eugeniusz Hadasik, Dariusz Kuc

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kinetics of the dynamic, as well as postdynamic recrystallization of the wrought magnesium alloy AZ31, was ascertained. Continuous compression tests associated with the study of dynamic recrystallization were realized at temperatures from 523 to 723 K and at the strain rates from 0.001 to 10 s−1. The activation energy in hot forming was determined as Q = 158 kJ/mol for stress-strain curves of conventional shape, or Q = 146 kJ/mol for stress-strain curves with the concave initial phase affected by twinning. If the Zener-Hollomon parameter Z > 9.1 × 1012 s−1 the deformation necessary for the initiation of dynamic recrystallization is almost independent on the forming parameters. Using the results of the stress relaxation tests, equations describing the kinetics of metadynamic recrystallization and the grain size originated in such a way were developed and the effect of individual variables was evaluated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.G. Beer and M.R. Barnett, Influence of Initial Microstructure on the Hot Working Flow Stress of Mg-3Al-1Zn, Mater. Sci. Eng., A, 2006, 423(1–2), p 292–299 A.G. Beer and M.R. Barnett, Influence of Initial Microstructure on the Hot Working Flow Stress of Mg-3Al-1Zn, Mater. Sci. Eng., A, 2006, 423(1–2), p 292–299
2.
Zurück zum Zitat S.-H. Choi, D.H. Kim, and B.S. Seong, Simulation of Strain-Softening Behaviors in an AZ31Mg Alloy Showing Distinct Twin-Induced Reorientation Before a Peak Stress, Met. Mater. Int., 2009, 15(2), p 239–248CrossRef S.-H. Choi, D.H. Kim, and B.S. Seong, Simulation of Strain-Softening Behaviors in an AZ31Mg Alloy Showing Distinct Twin-Induced Reorientation Before a Peak Stress, Met. Mater. Int., 2009, 15(2), p 239–248CrossRef
3.
Zurück zum Zitat M. Legerski, J. Plura, I. Schindler, S. Rusz, P. Kawulok, H. Kulveitová, E. Hadasik, D. Kuc, and G. Niewielski, Complex Flow Stress Model for a Magnesium Alloy AZ31 at Hot Forming, High Temp. Mater. Process., 2011, 30(1–2), p 63–69 M. Legerski, J. Plura, I. Schindler, S. Rusz, P. Kawulok, H. Kulveitová, E. Hadasik, D. Kuc, and G. Niewielski, Complex Flow Stress Model for a Magnesium Alloy AZ31 at Hot Forming, High Temp. Mater. Process., 2011, 30(1–2), p 63–69
4.
Zurück zum Zitat H.J. McQueen, P. Leo, and E. Cerri, Constitutive Equations for Mg Alloy Hot Work Modelling, Mater. Sci. Forum, 2009, 604–605, p 53–65CrossRef H.J. McQueen, P. Leo, and E. Cerri, Constitutive Equations for Mg Alloy Hot Work Modelling, Mater. Sci. Forum, 2009, 604–605, p 53–65CrossRef
5.
Zurück zum Zitat M. El Mehtedi, L. Balloni, S. Spigarelli, E. Evangelista, G. Rosen, B.H. Lee, and C.S. Lee, Comparative Study of High Temperature Workability of ZM21 and AZ31 Magnesium Alloys, Metall. Sci. Technol., 2007, 5(1), p 23–30 M. El Mehtedi, L. Balloni, S. Spigarelli, E. Evangelista, G. Rosen, B.H. Lee, and C.S. Lee, Comparative Study of High Temperature Workability of ZM21 and AZ31 Magnesium Alloys, Metall. Sci. Technol., 2007, 5(1), p 23–30
6.
Zurück zum Zitat E. Essadiqi, W.J. Liu, V. Kao, S.L. Yue, and R. Verma, Recrystallization in AZ31 Magnesium Alloy During Hot Deformation, Mater. Sci. Forum, 2005, 475–479, p 559–562CrossRef E. Essadiqi, W.J. Liu, V. Kao, S.L. Yue, and R. Verma, Recrystallization in AZ31 Magnesium Alloy During Hot Deformation, Mater. Sci. Forum, 2005, 475–479, p 559–562CrossRef
7.
Zurück zum Zitat B.H. Lee, N.S. Reddy, J.T. Yeom, and ChS Lee, Flow softening behavior during high temperature deformation of AZ31 Mg alloy, J. Mater. Process. Technol., 2007, 187(1), p 766–769CrossRef B.H. Lee, N.S. Reddy, J.T. Yeom, and ChS Lee, Flow softening behavior during high temperature deformation of AZ31 Mg alloy, J. Mater. Process. Technol., 2007, 187(1), p 766–769CrossRef
8.
Zurück zum Zitat M. Wang, B.Y. Zong, and G. Wang, A Phase-Field Model to Simulate Recrystallization in an AZ31Mg Alloy in Comparison of Experimental Data, J. Mater. Sci. Technol., 2008, 24(6), p 829–834 M. Wang, B.Y. Zong, and G. Wang, A Phase-Field Model to Simulate Recrystallization in an AZ31Mg Alloy in Comparison of Experimental Data, J. Mater. Sci. Technol., 2008, 24(6), p 829–834
9.
Zurück zum Zitat D. Kuc, E. Hadasik, G. Niewielski, and A. Plachta, Structure and Plasticity of the AZ31 Magnesium Alloy After Hot Deformation, J. Achiev. Mater. Manuf. Eng., 2008, 27(1), p 27–30 D. Kuc, E. Hadasik, G. Niewielski, and A. Plachta, Structure and Plasticity of the AZ31 Magnesium Alloy After Hot Deformation, J. Achiev. Mater. Manuf. Eng., 2008, 27(1), p 27–30
10.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32CrossRef
11.
Zurück zum Zitat L.P. Karjalainen and J. Perttula, Characteristics of Static and Metadynamic Recrystallization and Strain Accumulation in Hot-Deformed Austenite as Revealed by the Stress Relaxation Method, ISIJ Int., 1996, 36(6), p 729–736CrossRef L.P. Karjalainen and J. Perttula, Characteristics of Static and Metadynamic Recrystallization and Strain Accumulation in Hot-Deformed Austenite as Revealed by the Stress Relaxation Method, ISIJ Int., 1996, 36(6), p 729–736CrossRef
12.
Zurück zum Zitat J.S. Perttula and L.P. Karjalainen, Recrystallisation Rates in Austenite Measured by Double Compression and Stress Relaxation Methods, Mater. Sci. Technol., 1998, 14(7), p 626–630CrossRef J.S. Perttula and L.P. Karjalainen, Recrystallisation Rates in Austenite Measured by Double Compression and Stress Relaxation Methods, Mater. Sci. Technol., 1998, 14(7), p 626–630CrossRef
13.
Zurück zum Zitat E. Hadasik and D. Kuc, Deformation Mode in AZ31 Magnesium Alloy During Compression Tests, Acta Metall. Slovaca, 2010, 16(4), p 261–267 E. Hadasik and D. Kuc, Deformation Mode in AZ31 Magnesium Alloy During Compression Tests, Acta Metall. Slovaca, 2010, 16(4), p 261–267
14.
Zurück zum Zitat C.M. Sellars and WJMcG Tegart, Hot workability, Int. Metall. Rev., 1972, 17(1), p 1–24CrossRef C.M. Sellars and WJMcG Tegart, Hot workability, Int. Metall. Rev., 1972, 17(1), p 1–24CrossRef
15.
Zurück zum Zitat D. Kuc, E. Hadasik, and V. Pidvysotskyy, Opracowanie równań opisujących statyczne procesy odbudowy struktury odkształcanego na gorąco stopu magnezu (Determination of Equation Describing the Static Rebuilt Processes of Hot Deformed Magnesium Alloy), Hutn.-Wiad. Hutn., 2010, 77(8), p 410–414 (in Polish) D. Kuc, E. Hadasik, and V. Pidvysotskyy, Opracowanie równań opisujących statyczne procesy odbudowy struktury odkształcanego na gorąco stopu magnezu (Determination of Equation Describing the Static Rebuilt Processes of Hot Deformed Magnesium Alloy), Hutn.-Wiad. Hutn., 2010, 77(8), p 410–414 (in Polish)
16.
Zurück zum Zitat M. Legerski, I. Schindler, T. Kubina, E. Hadasik, D. Kuc, G. Niewielski, S. Rusz, P. Kawulok, Model of Static Recrystallization of Magnesium Alloy AZ31, Conference Proceedings METAL 2011, 18–20 May 2011 (Brno), Tanger Ltd, 2011, p 357–362 M. Legerski, I. Schindler, T. Kubina, E. Hadasik, D. Kuc, G. Niewielski, S. Rusz, P. Kawulok, Model of Static Recrystallization of Magnesium Alloy AZ31, Conference Proceedings METAL 2011, 18–20 May 2011 (Brno), Tanger Ltd, 2011, p 357–362
17.
Zurück zum Zitat E.A. Loria, K. Detert, and J.G. Morris, On the Avrami analysis of dimensionality in recrystallization, Acta Metall., 1965, 13(8), p 929–931CrossRef E.A. Loria, K. Detert, and J.G. Morris, On the Avrami analysis of dimensionality in recrystallization, Acta Metall., 1965, 13(8), p 929–931CrossRef
18.
Zurück zum Zitat J.D. Whittenberger, The Influence of Grain Size and Composition on Slow Plastic Flow in FeAl Between 1100 and 1400 K, Mater. Sci. Eng., 1986, 77, p 103–113CrossRef J.D. Whittenberger, The Influence of Grain Size and Composition on Slow Plastic Flow in FeAl Between 1100 and 1400 K, Mater. Sci. Eng., 1986, 77, p 103–113CrossRef
19.
Zurück zum Zitat D. Lin, T.L. Lin, A. Shan, and M. Chen, Superplasticity in Large-Grained Fe3Al Alloys, Intermetallics, 1996, 4(6), p 489–496CrossRef D. Lin, T.L. Lin, A. Shan, and M. Chen, Superplasticity in Large-Grained Fe3Al Alloys, Intermetallics, 1996, 4(6), p 489–496CrossRef
20.
Zurück zum Zitat C.M. Sellars and W.J. McTegard, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138CrossRef C.M. Sellars and W.J. McTegard, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138CrossRef
21.
Zurück zum Zitat H. Mirzadeh and A. Najafizadeh, Flow Stress Prediction at Hot Working Conditions, Mater. Sci. Eng., A, 2010, 527(4–5), p 1160–1164 H. Mirzadeh and A. Najafizadeh, Flow Stress Prediction at Hot Working Conditions, Mater. Sci. Eng., A, 2010, 527(4–5), p 1160–1164
22.
Zurück zum Zitat P. Kratochvíl and I. Schindler, Conditions for Hot Rolling of Iron Aluminide, Adv. Eng. Mater., 2004, 6(5), p 307–310CrossRef P. Kratochvíl and I. Schindler, Conditions for Hot Rolling of Iron Aluminide, Adv. Eng. Mater., 2004, 6(5), p 307–310CrossRef
23.
Zurück zum Zitat P. Kratochvíl, I. Schindler, and P. Hanus, Conditions for Hot Rolling of Fe3Al-Type Aluminide, Kovove Mater., 2006, 44(6), p 321–326 P. Kratochvíl, I. Schindler, and P. Hanus, Conditions for Hot Rolling of Fe3Al-Type Aluminide, Kovove Mater., 2006, 44(6), p 321–326
24.
Zurück zum Zitat I. Schindler, R. Kawalla, J. Plura, T. Kubina, S. Rusz, E. Hadasik, and V. Jurko, Model of Mean Flow Stress of Ti-IF Steel Considering Effect of Phase Transformations, Steel Res. Int., 2008, 79(10), p 758–764 I. Schindler, R. Kawalla, J. Plura, T. Kubina, S. Rusz, E. Hadasik, and V. Jurko, Model of Mean Flow Stress of Ti-IF Steel Considering Effect of Phase Transformations, Steel Res. Int., 2008, 79(10), p 758–764
25.
Zurück zum Zitat M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng., A, 2002, 337(1–2), p 121–133 M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng., A, 2002, 337(1–2), p 121–133
26.
Zurück zum Zitat S. Spigarelli and M. El Mehtedi, High-Temperature Deformation and Creep in Mg Wrought Alloys, Scr. Mater., 2010, 63(7), p 704–709CrossRef S. Spigarelli and M. El Mehtedi, High-Temperature Deformation and Creep in Mg Wrought Alloys, Scr. Mater., 2010, 63(7), p 704–709CrossRef
27.
Zurück zum Zitat B.H. Lee, K.S. Shin, and C.S. Lee, High Temperature Deformation Behavior of AZ31Mg Alloy, Mater. Sci. Forum, 2005, 475–479, p 2927–2930CrossRef B.H. Lee, K.S. Shin, and C.S. Lee, High Temperature Deformation Behavior of AZ31Mg Alloy, Mater. Sci. Forum, 2005, 475–479, p 2927–2930CrossRef
28.
Zurück zum Zitat S.S. Valgarali and T.G. Langdon, Deformation Mechanisms in h.c.p. Metals at Elevated Temperatures II. Creep Behavior of a Mg-0.8%Al Solid Solution Alloy, Acta Metall., 1982, 30(6), p 1157–1170CrossRef S.S. Valgarali and T.G. Langdon, Deformation Mechanisms in h.c.p. Metals at Elevated Temperatures II. Creep Behavior of a Mg-0.8%Al Solid Solution Alloy, Acta Metall., 1982, 30(6), p 1157–1170CrossRef
29.
Zurück zum Zitat L.P. Karjalainen, Stress Relaxation Method for Investigation of Softening Kinetics in Hot Deformed Steels, Mater. Sci. Technol., 1995, 11(6), p 557–565CrossRef L.P. Karjalainen, Stress Relaxation Method for Investigation of Softening Kinetics in Hot Deformed Steels, Mater. Sci. Technol., 1995, 11(6), p 557–565CrossRef
Metadaten
Titel
Activation Energy in Hot Forming and Recrystallization Models for Magnesium Alloy AZ31
verfasst von
Ivo Schindler
Petr Kawulok
Eugeniusz Hadasik
Dariusz Kuc
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0327-8

Weitere Artikel der Ausgabe 3/2013

Journal of Materials Engineering and Performance 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.