Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Activation of Chemical Substrates in Green Chemistry

verfasst von : Angelo Albini, Stefano Protti

Erschienen in: Paradigms in Green Chemistry and Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The stability and low polarization of organic molecules forces to use an aggressive chemical or heat to activate (one of) the reagent(s). Addition of an activator worsens the atom economy since spent reagents add to the waste, drastic conditions increase the energetic expenditure. Homogeneous and heterogeneous catalysis, phase transfer catalysis, bio- and photocatalysis, microwave activation, the use of non conventional solvents (supercritical solvents, ionic liquids) or solventless reactions are the means for obtaining a much more environment-friendly process. The application of such methods to various chemical processes is briefly reviewed according to the chemical transformation involved (redox processes, carbon-heteroatom and carbon-carbon bond forming processes), with regards both to commodities and fine chemistry products.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This does not mean that transition metal catalysis has no role in green synthesis. To the contrary, green processes of this type have been reported (although the topic is barely mentioned here for brevity), but trace of metals have to be carefully eliminated, particularly for products used as drugs. See for example: Buchwald SL (2008) Cross coupling. Acc Chem Res. 41: 1439. Liu S, Xiao J (2007) Toward green catalytic synthesis-transition metal-catalyzed reactions in non-conventional media. J Mol Cat A: Chemistry. 270:1–43. Parmeggiani C, Cardona F (2012) Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem. 14: 547–564.
 
Literatur
1.
Zurück zum Zitat Albini A, Fagnoni M (2008) 1908 Giacomo Ciamician and the concept of green chemistry. ChemSusChem 1:63–66 Albini A, Fagnoni M (2008) 1908 Giacomo Ciamician and the concept of green chemistry. ChemSusChem 1:63–66
2.
Zurück zum Zitat Lancaster M (2010) Green chemistry: an introductory text. Royal Chemical Society, London Lancaster M (2010) Green chemistry: an introductory text. Royal Chemical Society, London
3.
Zurück zum Zitat Hoelderich WF (2000) Environmentally benign manufacturing of fine and intermediate chemicals. Cat Today 62:115–130CrossRef Hoelderich WF (2000) Environmentally benign manufacturing of fine and intermediate chemicals. Cat Today 62:115–130CrossRef
4.
Zurück zum Zitat For review on the contribution of catalysis to green chemistry see: (a) Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Cat A 221:3–13. (b) Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC (2000) The role of catalysis in the design, development, and implementation of green chemistry. Cat Today 55:11–22. Sheldon R, Arends IWCE, Hanefeld U (2007) Green Chemistry and Catalysis. Wiley VCH, Germany For review on the contribution of catalysis to green chemistry see: (a) Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Cat A 221:3–13. (b) Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC (2000) The role of catalysis in the design, development, and implementation of green chemistry. Cat Today 55:11–22. Sheldon R, Arends IWCE, Hanefeld U (2007) Green Chemistry and Catalysis. Wiley VCH, Germany
5.
Zurück zum Zitat Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Tech Biotechnol 68:381–388CrossRef Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Tech Biotechnol 68:381–388CrossRef
6.
Zurück zum Zitat Sheldon RA (1999) Downing heterogeneous catalytic transformations for environmentally friendly production. Appl Catal A 189:163–183CrossRef Sheldon RA (1999) Downing heterogeneous catalytic transformations for environmentally friendly production. Appl Catal A 189:163–183CrossRef
7.
Zurück zum Zitat See for reviews Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133. Hattori, H (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl Cat A: General 222:247–259 See for reviews Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133. Hattori, H (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl Cat A: General 222:247–259
8.
Zurück zum Zitat Pollet P, Hart RJ, Eckert C A, Liotta CL (2010) Organic aqueous tunable solvents (OATS): a vehicle for coupling reactions and separations. Acc Chem Res 43:1237–1245 Pollet P, Hart RJ, Eckert C A, Liotta CL (2010) Organic aqueous tunable solvents (OATS): a vehicle for coupling reactions and separations. Acc Chem Res 43:1237–1245
9.
Zurück zum Zitat Vincent JM (2012) Fluorous catalysis: from the origin to recent advances. Topics Curr Chem 308:153–174CrossRef Vincent JM (2012) Fluorous catalysis: from the origin to recent advances. Topics Curr Chem 308:153–174CrossRef
10.
Zurück zum Zitat Dyson PJ (2004) Biphasic synthesis. In McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1, pp 689–695 Dyson PJ (2004) Biphasic synthesis. In McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1, pp 689–695
11.
Zurück zum Zitat Nelson A (1999) Asymmetric phase-transfer catalysis. Angew Chem Int Ed 38:1583–1585. Shirakawa S, Maruoka K (2013) Recent developments in asymmetric phase-transfer reactions. Angew Chem Int Ed 52:4312–4348 Nelson A (1999) Asymmetric phase-transfer catalysis. Angew Chem Int Ed 38:1583–1585. Shirakawa S, Maruoka K (2013) Recent developments in asymmetric phase-transfer reactions. Angew Chem Int Ed 52:4312–4348
12.
Zurück zum Zitat Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895CrossRef Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895CrossRef
13.
Zurück zum Zitat Jindal R, Sablok A (2015) Preparation and applications of room temperature ionic liquids in organic synthesis: a review on recent efforts. Curr Green Chem 2:135–155CrossRef Jindal R, Sablok A (2015) Preparation and applications of room temperature ionic liquids in organic synthesis: a review on recent efforts. Curr Green Chem 2:135–155CrossRef
14.
Zurück zum Zitat Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10:361–372. Gupta P, Mahajan A (2015) Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Adv 5:26686–26705 Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10:361–372. Gupta P,  Mahajan A (2015) Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Adv 5:26686–26705
15.
Zurück zum Zitat See for reviews Wohlgemuth R (2010) Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotech 21:713–724; Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50. Ran N, Zhao L (eds) (2011) Biocatalysis for green chemistry and chemical processes development. Wiley, Hoboken, New Jersey. Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3:741–777 See for reviews Wohlgemuth R (2010) Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotech 21:713–724; Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50. Ran N, Zhao L (eds) (2011) Biocatalysis for green chemistry and chemical processes development. Wiley, Hoboken, New Jersey. Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3:741–777
16.
Zurück zum Zitat (a) Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave assisted synthesis. A critical technology overview. Chem Eng Technol 26:1207–1216 (b) Lidström P, Tieney J, Wathey B, Westmann J (2001) Microwave organic synthesis. A review. Tetrahedron 57:9225–9283. (c) Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37:1546–1557. (d) Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: a comparative study of different reaction techniques. Org Proc Res Dev 9:516–518. (e) Roberts BA, Strauss CR (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res 38:653–661 (a) Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave assisted synthesis. A critical technology overview. Chem Eng Technol 26:1207–1216 (b) Lidström P, Tieney J, Wathey B, Westmann J (2001) Microwave organic synthesis. A review. Tetrahedron 57:9225–9283. (c) Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37:1546–1557. (d) Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: a comparative study of different reaction techniques. Org Proc Res Dev 9:516–518. (e) Roberts BA, Strauss CR (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. Acc Chem Res 38:653–661
17.
Zurück zum Zitat Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21. Protti S, Albini A Serpone N (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. Phys Chem Chem Phys 16:19790–19827 Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21. Protti S, Albini A Serpone N (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. Phys Chem Chem Phys 16:19790–19827
18.
Zurück zum Zitat Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011CrossRef Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011CrossRef
19.
Zurück zum Zitat Sato K, Aoki M, Noyori R (1998) A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647CrossRef Sato K, Aoki M, Noyori R (1998) A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647CrossRef
20.
Zurück zum Zitat Noyori R, Aoki M, Sato, K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986 Noyori R, Aoki M, Sato, K (2003) Green oxidation with aqueous hydrogen peroxide. Chem Commun 16:1977–1986
21.
Zurück zum Zitat Kinen CO, Rossi LI, de Rossi RH (2009) The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics. Green Chem 11:223–228CrossRef Kinen CO, Rossi LI, de Rossi RH (2009) The development of an environmentally benign sulfide oxidation procedure and its assessment by green chemistry metrics. Green Chem 11:223–228CrossRef
22.
Zurück zum Zitat Taramasso M, Perego G, Notari B (1984) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4410501 A Taramasso M, Perego G, Notari B (1984) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4410501 A
23.
Zurück zum Zitat Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Cat A: Chem 117:351–356CrossRef Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Cat A: Chem 117:351–356CrossRef
24.
Zurück zum Zitat Schenck GO, Ziegler (1944) Die Synthese des Ascaridols. Naturwissenschaft 32:157 Schenck GO, Ziegler (1944) Die Synthese des Ascaridols. Naturwissenschaft 32:157
25.
Zurück zum Zitat Schenk GO, Ohloff G, Klein E (1968) Mixtures of oxygenated acyclic terpenes. US Patent 3,382,276 Schenk GO, Ohloff G, Klein E (1968) Mixtures of oxygenated acyclic terpenes. US Patent 3,382,276
26.
Zurück zum Zitat Ravelli D, Protti S, Neri P, Fagnoni M, Albini A (2011) Photochemical technologies assessed: the case of rose oxide. Green Chem 13:1876–1884CrossRef Ravelli D, Protti S, Neri P, Fagnoni M, Albini A (2011) Photochemical technologies assessed: the case of rose oxide. Green Chem 13:1876–1884CrossRef
27.
Zurück zum Zitat Varma RS (1997) The presidential green chemistry challenge awards program, summary of 1997 award entries and recipients, EPA744-S-97-001. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, p 9 Varma RS (1997) The presidential green chemistry challenge awards program, summary of 1997 award entries and recipients, EPA744-S-97-001. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, p 9
29.
Zurück zum Zitat Haggiage E, Coyle EE, Joyce K, Oelgemoeller M (2009) Green photochemistry: solar chemical synthesis of 5-amido-1,4-naphthoquinones. Green Chem 11:318–321CrossRef Haggiage E, Coyle EE, Joyce K, Oelgemoeller M (2009) Green photochemistry: solar chemical synthesis of 5-amido-1,4-naphthoquinones. Green Chem 11:318–321CrossRef
30.
Zurück zum Zitat Le Bars J, Dakka J, Sheldon RA (1996) Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Appl Catal A: General 136:69–80CrossRef Le Bars J, Dakka J, Sheldon RA (1996) Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Appl Catal A: General 136:69–80CrossRef
31.
Zurück zum Zitat Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72:1233–1246CrossRef Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72:1233–1246CrossRef
32.
Zurück zum Zitat Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant baker’s yeast as a whole-cell catalyst for asymmetric Baeyer–Villiger oxidations. J Am Chem Soc 120:3541–3547CrossRef Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant baker’s yeast as a whole-cell catalyst for asymmetric Baeyer–Villiger oxidations. J Am Chem Soc 120:3541–3547CrossRef
33.
Zurück zum Zitat Kohlmann C, Leuchs S, Greiner L, Leitner W (2011) Continuous biocatalytic synthesis of (R)-2-octanol with integrated product separation. Green Chem 13:1430–1436CrossRef Kohlmann C, Leuchs S, Greiner L, Leitner W (2011) Continuous biocatalytic synthesis of (R)-2-octanol with integrated product separation. Green Chem 13:1430–1436CrossRef
34.
Zurück zum Zitat Wu X, Wang J, Chen C, Liu N, Chen Y (2009) Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron Asymmetry 20:2504–2509CrossRef Wu X, Wang J, Chen C, Liu N, Chen Y (2009) Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron Asymmetry 20:2504–2509CrossRef
35.
Zurück zum Zitat Easwar S, Argade NP (2003) Amano PS-catalysed enantioselective acylation of (±)-α-methyl-1,3-benzodioxole-5-ethanol: an efficient resolution of chiral intermediates of the remarkable antiepileptic drug candidate, (−)-talampanel Tetrahedron Asym 14:333–337 (c) Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymm 14:2659–2681 Easwar S, Argade NP (2003) Amano PS-catalysed enantioselective acylation of (±)-α-methyl-1,3-benzodioxole-5-ethanol: an efficient resolution of chiral intermediates of the remarkable antiepileptic drug candidate, (−)-talampanel Tetrahedron Asym 14:333–337 (c) Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymm 14:2659–2681
36.
Zurück zum Zitat Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309CrossRef Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309CrossRef
37.
Zurück zum Zitat Hansen KB, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M, Krska S, Rosner T, Simmons B, Balsells J, Ikemoto N, Sun Y, Spindler F, Malan C, Grabowski EJJ, Armstrong JD III (2009) Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 131:8796–8804 Hansen KB, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M, Krska S, Rosner T, Simmons B, Balsells J, Ikemoto N, Sun Y, Spindler F, Malan C, Grabowski EJJ, Armstrong JD III (2009) Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 131:8796–8804
38.
Zurück zum Zitat (a) Adams JP, Alder CM, Andrews I, Bullion AM, Campbell-Crawford M, Darcy MG, Hayler JD, Henderson RK, Oare CA, Pendrak I, Redman AM, Shuster LE, Sneddon HF, Walker MD (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549. An analogous scale has been compiled for the choice of solvents (see Fig 2 in Ch 5). (b) Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797 (a) Adams JP, Alder CM, Andrews I, Bullion AM, Campbell-Crawford M, Darcy MG, Hayler JD, Henderson RK, Oare CA, Pendrak I, Redman AM, Shuster LE, Sneddon HF, Walker MD (2013) Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem 15:1542–1549. An analogous scale has been compiled for the choice of solvents (see Fig 2 in Ch 5). (b) Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797
39.
Zurück zum Zitat Comerford JW, Clark JH, Macquarrie DJ, Breeden SW (2009) Clean, reusable and low cost heterogeneous catalyst for amide synthesis. Chem Comm 18:2562–2564 Comerford JW, Clark JH, Macquarrie DJ, Breeden SW (2009) Clean, reusable and low cost heterogeneous catalyst for amide synthesis. Chem Comm 18:2562–2564
40.
Zurück zum Zitat Caldwell N, Jamieson C, Simpson I, Watson AJB (2013) Development of a sustainable catalytic ester amidation process. ACS Sustain Chem Eng 1:1339–1344CrossRef Caldwell N, Jamieson C, Simpson I, Watson AJB (2013) Development of a sustainable catalytic ester amidation process. ACS Sustain Chem Eng 1:1339–1344CrossRef
41.
Zurück zum Zitat Das VK, Devib RR, Thakur AJ (2013) Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: a convenient and greener ‘NOSE’ approach. Appl Cat A: Gen 456:118–125CrossRef Das VK, Devib RR, Thakur AJ (2013) Recyclable, highly efficient and low cost nano-MgO for amide synthesis under SFRC: a convenient and greener ‘NOSE’ approach. Appl Cat A: Gen 456:118–125CrossRef
42.
Zurück zum Zitat Verweij J, de Vroom E (1993) Industrial transformations of penicillins and cephalosporins. Recl Trav Chim Pays-Bas 112:66–81CrossRef Verweij J, de Vroom E (1993) Industrial transformations of penicillins and cephalosporins. Recl Trav Chim Pays-Bas 112:66–81CrossRef
43.
Zurück zum Zitat Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Dev 2:128–133CrossRef Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Dev 2:128–133CrossRef
44.
Zurück zum Zitat Arroyo M, de la Mata I, Acebal C, Castillón MP (2003) Biotechnological applications of penicillin acylases: state-of-the-art. Appl Microbiol Biotechnol 60:507–514. Youshko MI, van Langen LM, de Vroom E, van Rantwijk F, Sheldon RA, Svedas, VK (2001) Highly efficient synthesis of ampicillin in an “Aqueous Solution-Precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotech Bioengin 73:426–430. Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of ß-lactam antibiotics. Adv Synth Catal 343:559–576 Arroyo M, de la Mata I, Acebal C, Castillón MP (2003) Biotechnological applications of penicillin acylases: state-of-the-art. Appl Microbiol Biotechnol 60:507–514. Youshko MI, van Langen LM, de Vroom E, van Rantwijk F, Sheldon RA, Svedas, VK (2001) Highly efficient synthesis of ampicillin in an “Aqueous Solution-Precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotech Bioengin 73:426–430. Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of ß-lactam antibiotics. Adv Synth Catal 343:559–576
45.
Zurück zum Zitat Hölderich WH, Dahlhoff G, Ichihashi H, Sugita K (2003) Method for producing ε-caprolactam and reactor for the method. US Patent 6531595 B2 Hölderich WH, Dahlhoff G, Ichihashi H, Sugita K (2003) Method for producing ε-caprolactam and reactor for the method. US Patent 6531595 B2
46.
Zurück zum Zitat Barnard TM, Vanier GS, Collins MJ Jr (2006) Scale-up of the green synthesis of azacycloalkanes and isoindolines under microwave irradiation. Org Proc Res Dev 10:1233–1237CrossRef Barnard TM, Vanier GS, Collins MJ Jr (2006) Scale-up of the green synthesis of azacycloalkanes and isoindolines under microwave irradiation. Org Proc Res Dev 10:1233–1237CrossRef
47.
Zurück zum Zitat Ryu I, Tani A, Fukuyama T, Ravelli R, Montanaro S, Fagnoni (2013) Efficient C–H/C–N and C–H/C–CO–N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org Lett 15:2554–2557 Ryu I, Tani A, Fukuyama T, Ravelli R, Montanaro S, Fagnoni (2013) Efficient C–H/C–N and C–H/C–CO–N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org Lett 15:2554–2557
48.
Zurück zum Zitat Paravidino M, Hanefeld U (2011) Enzymatic acylation: assessing the greenness of different acyl donors. Green Chem 13:2651–2657CrossRef Paravidino M, Hanefeld U (2011) Enzymatic acylation: assessing the greenness of different acyl donors. Green Chem 13:2651–2657CrossRef
49.
Zurück zum Zitat Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM (2009) Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem 44:226–231CrossRef Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM (2009) Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem 44:226–231CrossRef
50.
Zurück zum Zitat Korupp C, Weberskirch R, Muller JJ, Liese A, Hilterhaus L (2010) Scale-up of lipase-catalyzed polyester synthesis. Org Process Res Dev 14:1118–1124CrossRef Korupp C, Weberskirch R, Muller JJ, Liese A, Hilterhaus L (2010) Scale-up of lipase-catalyzed polyester synthesis. Org Process Res Dev 14:1118–1124CrossRef
51.
Zurück zum Zitat Andraos JA (2012) Green metrics assessment of phosgene and phosgene-free syntheses of industrially important commodity chemicals. Pure Appl Chem 84:827–860 Andraos JA (2012) Green metrics assessment of phosgene and phosgene-free syntheses of industrially important commodity chemicals. Pure Appl Chem 84:827–860
52.
Zurück zum Zitat Tundo P, Selva M, Marques CA (1996). In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment, Ch. 7. American Chemical Society, Washington, DC, p 81 Tundo P, Selva M, Marques CA (1996). In: Anastas PT, Williamson TC (eds) Green chemistry: designing chemistry for the environment, Ch. 7. American Chemical Society, Washington, DC, p 81
53.
Zurück zum Zitat Cooke M, Clark J, Breeden S (2009) Lewis acid catalysed microwave-assisted synthesis of diaryl sulfones and comparison of associated carbon dioxide emissions. J Mol Catalysis A: Chem 103:132–136CrossRef Cooke M, Clark J, Breeden S (2009) Lewis acid catalysed microwave-assisted synthesis of diaryl sulfones and comparison of associated carbon dioxide emissions. J Mol Catalysis A: Chem 103:132–136CrossRef
54.
Zurück zum Zitat Armor JN (1992) Environmental catalysis. Appl Catal B: Environ 1:221–256CrossRef Armor JN (1992) Environmental catalysis. Appl Catal B: Environ 1:221–256CrossRef
55.
Zurück zum Zitat Davis ME (1993) New vistas in zeolite and molecular sieve catalysis. Acc Chem Res 26:111–115CrossRef Davis ME (1993) New vistas in zeolite and molecular sieve catalysis. Acc Chem Res 26:111–115CrossRef
56.
Zurück zum Zitat See for example Fong YY, Abdullah AZ, Ahmad AL, Bhatia S (2008) Development of functionalized zeolite membrane and its potential role as reactor combined separator for para-xylene production from xylene isomers. Chem Eng J 139:172–193 See for example Fong YY, Abdullah AZ, Ahmad AL, Bhatia S (2008) Development of functionalized zeolite membrane and its potential role as reactor combined separator for para-xylene production from xylene isomers. Chem Eng J 139:172–193
57.
Zurück zum Zitat Hoefnagel AJ, van Bekkum H (1993) Direct Fries reaction of resorcinol with benzoic acids catalyzed by zeolite H-beta. Appl Catal A: Gen 97:87–102 Hoefnagel AJ, van Bekkum H (1993) Direct Fries reaction of resorcinol with benzoic acids catalyzed by zeolite H-beta. Appl Catal A: Gen 97:87–102
58.
Zurück zum Zitat Yadav GD, Kamble SB (2009) Synthesis of carvacrol by Friedel–Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. J Chem Technol Biotechnol 84:1499–1508CrossRef Yadav GD, Kamble SB (2009) Synthesis of carvacrol by Friedel–Crafts alkylation of o-cresol with isopropanol using superacidic catalyst UDCaT-5. J Chem Technol Biotechnol 84:1499–1508CrossRef
59.
Zurück zum Zitat Yadav GD, Kamble SB (2012) Atom efficient Friedel–Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Appl Cat A: Gen 433–434:265–274CrossRef Yadav GD, Kamble SB (2012) Atom efficient Friedel–Crafts acylation of toluene with propionic anhydride over solid mesoporous superacid UDCaT-5. Appl Cat A: Gen 433–434:265–274CrossRef
60.
Zurück zum Zitat Ishihara K, Kubota M, Kurihara H, Yamamoto H (1996) Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J Org Chem 61:4560–4567CrossRef Ishihara K, Kubota M, Kurihara H, Yamamoto H (1996) Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. J Org Chem 61:4560–4567CrossRef
61.
Zurück zum Zitat Korea R, Srivastava R, Satpatib B (2015) Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and beta zeolites. Appl Catal A: Gen 493:129–141CrossRef Korea R, Srivastava R, Satpatib B (2015) Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and beta zeolites. Appl Catal A: Gen 493:129–141CrossRef
62.
Zurück zum Zitat Chaube VD, Moreau P, Finiels A, Ramaswamy AV, Singh AP (2002) A novel single step selective synthesis of 4-hydroxybenzophenone (4-HBP) using zeolite H-beta. Cat Lett 79:89–94CrossRef Chaube VD, Moreau P, Finiels A, Ramaswamy AV, Singh AP (2002) A novel single step selective synthesis of 4-hydroxybenzophenone (4-HBP) using zeolite H-beta. Cat Lett 79:89–94CrossRef
63.
Zurück zum Zitat See for reviews: Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459 See for reviews: Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459
64.
Zurück zum Zitat Shi T, Guo Z, Yu H, Xie J, Zhong Y, Zhua W (2013) Atom-economic synthesis of optically active warfarin anticoagulant over a chiral MOF organocatalyst. Adv Synth Cat 355:2538–2543CrossRef Shi T, Guo Z, Yu H, Xie J, Zhong Y, Zhua W (2013) Atom-economic synthesis of optically active warfarin anticoagulant over a chiral MOF organocatalyst. Adv Synth Cat 355:2538–2543CrossRef
65.
Zurück zum Zitat Climent MJ, Corma A, Iborra S, Mifsud M, Velty A (2010) New one-pot multistep process with multifunctional catalysts: decreasing the E-factor in the synthesis of fine chemicals. Green Chem 12:99–107CrossRef Climent MJ, Corma A, Iborra S, Mifsud M, Velty A (2010) New one-pot multistep process with multifunctional catalysts: decreasing the E-factor in the synthesis of fine chemicals. Green Chem 12:99–107CrossRef
66.
Zurück zum Zitat For other examples related to the use of multifunctional catalysts see Climent MJ, Corma A, Iborra S, Sabater MJ (2014) Heterogeneous catalysis for tandem reactions. ACS Catal 4:870–891 For other examples related to the use of multifunctional catalysts see Climent MJ, Corma A, Iborra S, Sabater MJ (2014) Heterogeneous catalysis for tandem reactions. ACS Catal 4:870–891
67.
Zurück zum Zitat Tanabea K, Hoelderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal A: Gen 181:399–434CrossRef Tanabea K, Hoelderich WF (1999) Industrial application of solid acid-base catalysts. Appl Catal A: Gen 181:399–434CrossRef
68.
Zurück zum Zitat Palmieri A, Gabrielli S, Ballini R (2013) Low impact synthesis of β-nitroacrylates under fully heterogeneous conditions. Green Chem 15:2344–2348 Palmieri A, Gabrielli S, Ballini R (2013) Low impact synthesis of β-nitroacrylates under fully heterogeneous conditions. Green Chem 15:2344–2348
69.
Zurück zum Zitat Fringuelli D, Lanari D, Pizzo F, Vaccaro L (2010) An E-factor minimized protocol for the preparation of methyl β-hydroxy esters. Green Chem 12:1301–1305CrossRef Fringuelli D, Lanari D, Pizzo F, Vaccaro L (2010) An E-factor minimized protocol for the preparation of methyl β-hydroxy esters. Green Chem 12:1301–1305CrossRef
70.
Zurück zum Zitat Kobayashi S, Manabe K (2000) Green Lewis acid catalysis in organic synthesis. Pure Appl Chem 72:1373–1380. Kobayashi S, Manabe K (2002) Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc Chem Res 35:209–217 Kobayashi S, Manabe K (2000) Green Lewis acid catalysis in organic synthesis. Pure Appl Chem 72:1373–1380. Kobayashi S, Manabe K (2002) Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc Chem Res 35:209–217
71.
Zurück zum Zitat Kobayashi S, Hachiya I (1994) Lanthanide triflates as water-tolerant Lewis acids activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media. J Org Chem 59:3590–3596CrossRef Kobayashi S, Hachiya I (1994) Lanthanide triflates as water-tolerant Lewis acids activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media. J Org Chem 59:3590–3596CrossRef
72.
Zurück zum Zitat Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching L, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotech 25:338–344CrossRef Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching L, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotech 25:338–344CrossRef
73.
Zurück zum Zitat Das VK, Borah M, Thakur AJ (2013) Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J Org Chem 78:3361–3366CrossRef Das VK, Borah M, Thakur AJ (2013) Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J Org Chem 78:3361–3366CrossRef
74.
Zurück zum Zitat Hendricks JD, Mott GN (1992) Method for producing ibuprofen. Hoechst Celansese Corporation, US Patent 5 166 418. Process for the carbonylation of 1-(4-isobutylphenyl) ethanol in the presence of ibuprofen. Eur Patent Appl, EP 460 905, 1991, Chem Abstr, 116 (1992) 83378 Hendricks JD, Mott GN (1992) Method for producing ibuprofen. Hoechst Celansese Corporation, US Patent 5 166 418. Process for the carbonylation of 1-(4-isobutylphenyl) ethanol in the presence of ibuprofen. Eur Patent Appl, EP 460 905, 1991, Chem Abstr, 116 (1992) 83378
75.
Zurück zum Zitat Qiu Z, He Y, Zheng D, Liu F (2005) Study on the synthesis of phenylacetic acid by carbonylation of benzyl chloride under normal pressure. J Nat Gas Chem 14:40–46. See also Cornils D, Herrmann WA (eds) (2006) Aqueous-phase organometallic catalysis: concepts and applications. Wiley VCH, Germany Qiu Z, He Y, Zheng D, Liu F (2005) Study on the synthesis of phenylacetic acid by carbonylation of benzyl chloride under normal pressure. J Nat Gas Chem 14:40–46. See also Cornils D, Herrmann WA (eds) (2006) Aqueous-phase organometallic catalysis: concepts and applications. Wiley VCH, Germany
76.
Zurück zum Zitat Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 3133–3142 Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 3133–3142
77.
Zurück zum Zitat Bohnen HW, Cornils B (2002) Hydroformylation of alkenes: an industrial view of the status and importance. Adv Catal 47:1–64. Cornils B (1998) Industrial aqueous biphasic catalysis: status and directions. Org Proc Res Dev 2:121–127 Bohnen HW, Cornils B (2002) Hydroformylation of alkenes: an industrial view of the status and importance. Adv Catal 47:1–64. Cornils B (1998) Industrial aqueous biphasic catalysis: status and directions. Org Proc Res Dev 2:121–127
78.
Zurück zum Zitat Horvàth I (1998) Fluorous biphase chemistry. Acc Chem Res 31:641–650CrossRef Horvàth I (1998) Fluorous biphase chemistry. Acc Chem Res 31:641–650CrossRef
79.
Zurück zum Zitat Perperi E, Huang Y, Angeli P, Manos C, Mathison CR, Cole-Hamilton DJ, Adams DJ, Hope EG (2004) The design of a continuous reactor for fluorous biphasic reactions under pressure and its use in alkene hydroformylation. Dalton Trans 14:2062–2064. Adams DJ, Bennett JA, Cole-Hamilton DJ, Hope DJ, Hopewell J, Kight J, Pogorzelec P, Stuart AM (2005) Rhodium catalyzed hydroformylation of alkenes using highly fluorophilic phosphines. Dalton Trans 24:3862–3867. Bach I, Cole-Hamilton DJ (1998) Hydroformylation of hex-1-ene in supercritical carbon dioxide catalyzed by rhodium trialkylphosphine complexes. Chem Commun 14:1463–1464 Perperi E, Huang Y, Angeli P, Manos C, Mathison CR, Cole-Hamilton DJ, Adams DJ, Hope EG (2004) The design of a continuous reactor for fluorous biphasic reactions under pressure and its use in alkene hydroformylation. Dalton Trans 14:2062–2064. Adams DJ, Bennett JA, Cole-Hamilton DJ, Hope DJ, Hopewell J, Kight J, Pogorzelec P, Stuart AM (2005) Rhodium catalyzed hydroformylation of alkenes using highly fluorophilic phosphines. Dalton Trans 24:3862–3867. Bach I, Cole-Hamilton DJ (1998) Hydroformylation of hex-1-ene in supercritical carbon dioxide catalyzed by rhodium trialkylphosphine complexes. Chem Commun 14:1463–1464
80.
Zurück zum Zitat Webb PW, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379CrossRef Webb PW, Kunene TE, Cole-Hamilton DJ (2005) Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids. Green Chem 7:373–379CrossRef
81.
Zurück zum Zitat Sellin MF, Bach I, Webster JM, Montilla F, Rosa V, Avilés T, Poliakoff M, Cole-Hamilton DJ (2002) Hydroformylation of alkenes in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes. J Chem Soc Dalton Trans 4569–4576 Sellin MF, Bach I, Webster JM, Montilla F, Rosa V, Avilés T, Poliakoff M, Cole-Hamilton DJ (2002) Hydroformylation of alkenes in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes. J Chem Soc Dalton Trans 4569–4576
82.
Zurück zum Zitat Chauvin Y, Mussmann L, Olivier H (1995) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew Chem Int Ed Eng 34:2698–2700CrossRef Chauvin Y, Mussmann L, Olivier H (1995) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew Chem Int Ed Eng 34:2698–2700CrossRef
83.
Zurück zum Zitat Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588CrossRef Webb PB, Sellin MF, Kunene TE, Williamson S, Slawin AMZ, Cole-Hamilton DJ (2003) Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J Am Chem Soc 125:15577–15588CrossRef
84.
Zurück zum Zitat Kulkarni A, Torok B (2010) Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolones. Green Chem 12:875–878CrossRef Kulkarni A, Torok B (2010) Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolones. Green Chem 12:875–878CrossRef
85.
Zurück zum Zitat Corradi A, Leonelli C, Rizzuti A, Rosa R, Veronesi P, Grandi R, Baldassari S, Villa C (2007) New “green” approaches to the synthesis of pyrazole derivatives. Molecules 12:1482–1495CrossRef Corradi A, Leonelli C, Rizzuti A, Rosa R, Veronesi P, Grandi R, Baldassari S, Villa C (2007) New “green” approaches to the synthesis of pyrazole derivatives. Molecules 12:1482–1495CrossRef
86.
Zurück zum Zitat Martins MAP, Beck PH, Buriol L, Frizzo CP, Moreira DN, Marzari MRB, Zanatta M, Machado P, Zanatta N, Bonacorso HG (2013) Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatsh Chem 144:1043–1050CrossRef Martins MAP, Beck PH, Buriol L, Frizzo CP, Moreira DN, Marzari MRB, Zanatta M, Machado P, Zanatta N, Bonacorso HG (2013) Evaluation of the synthesis of 1-(pentafluorophenyl)-4,5-dihydro-1H-pyrazoles using green metrics. Monatsh Chem 144:1043–1050CrossRef
87.
Zurück zum Zitat Henriques CA, Pinto SMA, Aquino GLB, Pineiro M, Calvete MJF, Pereira MM (2014) Ecofriendly porphyrin synthesis by using water under microwave irradiation. Chem Sus Chem 7:2821–2824CrossRef Henriques CA, Pinto SMA, Aquino GLB, Pineiro M, Calvete MJF, Pereira MM (2014) Ecofriendly porphyrin synthesis by using water under microwave irradiation. Chem Sus Chem 7:2821–2824CrossRef
88.
Zurück zum Zitat (a) Hook BDA, Dohle WP, Hirst R, Pickworth M, Berry MB, Booker–Milburn KI (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564. (b) Knowles JP, Elliott LD, Booker–Milburn KI (2012) Flow photochemistry: old light through new windows. Beilstein J Org Chem 8:2025–2052 (a) Hook BDA, Dohle WP, Hirst R, Pickworth M, Berry MB, Booker–Milburn KI (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70:7558–7564. (b) Knowles JP, Elliott LD, Booker–Milburn KI (2012) Flow photochemistry: old light through new windows. Beilstein J Org Chem 8:2025–2052
89.
Zurück zum Zitat (a) Yoon TP, Ischay M, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. (b) Ischay MA, Ament MS, Yoon TP (2012) Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chem Sci 3:2807–2811 (a) Yoon TP, Ischay M, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. (b) Ischay MA, Ament MS, Yoon TP (2012) Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chem Sci 3:2807–2811
Metadaten
Titel
Activation of Chemical Substrates in Green Chemistry
verfasst von
Angelo Albini
Stefano Protti
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-25895-9_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.