Skip to main content
Erschienen in: Wireless Networks 8/2019

16.08.2019

Actor-critic deep learning for efficient user association and bandwidth allocation in dense mobile networks with green base stations

verfasst von: Quang Vinh Do, Insoo Koo

Erschienen in: Wireless Networks | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce an efficient user-association and bandwidth-allocation scheme based on an actor-critic deep learning framework for downlink data transmission in dense mobile networks. In this kind of network, small cells are densely deployed in a single macrocell, and share the same spectrum band with the macrocell. The small-cell base stations are also called green base stations since they are powered solely by solar-energy harvesters. Therefore, we propose an actor-critic deep learning (ACDL) algorithm for the purpose of maximizing long-term network performance while adhering to constraints on harvested energy and spectrum sharing. For this purpose, the agent of the ACDL algorithm tries to obtain an optimal user-association and bandwidth-allocation policy by interacting with the network’s environment. We first formulate the optimization problem in this paper as a Markov decision process, during which the agent learns about the evolution of the environment through trial and error experience. Then, we use a deep neural network to model the policy function and the value function in the actor and in the critic of the agent, respectively. The actor selects an action based on the output of the policy network. Meanwhile, the critic uses the output of the value network to help the actor evaluate the taken action. Numerical results demonstrate that the proposed algorithm can enhance network performance in the long run.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M. A., & Shakir, M. Z. (2015). MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 22(5), 13–21.CrossRef Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M. A., & Shakir, M. Z. (2015). MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 22(5), 13–21.CrossRef
2.
Zurück zum Zitat Chou, C.-T., & Shin, K. G. (2004). Analysis of adaptive bandwidth allocation in wireless networks with multilevel degradable quality of service. IEEE Transactions on Mobile Computing, 3(1), 5–17.CrossRef Chou, C.-T., & Shin, K. G. (2004). Analysis of adaptive bandwidth allocation in wireless networks with multilevel degradable quality of service. IEEE Transactions on Mobile Computing, 3(1), 5–17.CrossRef
3.
Zurück zum Zitat Zhou, Z., Dong, M., Ota, K., Wang, G., & Yang, L. T. (2016). Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based LTE-A networks. IEEE Internet of Things Journal, 3(3), 428–438.CrossRef Zhou, Z., Dong, M., Ota, K., Wang, G., & Yang, L. T. (2016). Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based LTE-A networks. IEEE Internet of Things Journal, 3(3), 428–438.CrossRef
4.
Zurück zum Zitat Su, J., & Liu, Y. (2015). Priority-based bandwidth allocation in heterogeneous wireless network. In 11th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–6). Su, J., & Liu, Y. (2015). Priority-based bandwidth allocation in heterogeneous wireless network. In 11th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–6).
5.
Zurück zum Zitat Esmailpour, A., & Nasser, N. (2011). Dynamic QoS-based bandwidth allocation framework for broadband wireless networks. IEEE Transactions on Vehicular Technology, 60(6), 2690–2700.CrossRef Esmailpour, A., & Nasser, N. (2011). Dynamic QoS-based bandwidth allocation framework for broadband wireless networks. IEEE Transactions on Vehicular Technology, 60(6), 2690–2700.CrossRef
6.
Zurück zum Zitat Han, T., & Ansari, N. (2013). On optimizing green energy utilization for cellular networks with hybrid energy supplies. IEEE Transactions on Wireless Communications, 12(8), 3872–3882.CrossRef Han, T., & Ansari, N. (2013). On optimizing green energy utilization for cellular networks with hybrid energy supplies. IEEE Transactions on Wireless Communications, 12(8), 3872–3882.CrossRef
7.
Zurück zum Zitat Dhillon, H. S., Li, Y., Nuggehalli, P., Pi, Z., & Andrews, J. G. (2014). Fundamentals of heterogeneous cellular networks with energy harvesting. IEEE Transactions on Wireless Communications, 13(5), 2782–2797.CrossRef Dhillon, H. S., Li, Y., Nuggehalli, P., Pi, Z., & Andrews, J. G. (2014). Fundamentals of heterogeneous cellular networks with energy harvesting. IEEE Transactions on Wireless Communications, 13(5), 2782–2797.CrossRef
8.
Zurück zum Zitat Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13(4), 524–540.CrossRef Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13(4), 524–540.CrossRef
9.
Zurück zum Zitat Son, K., Chong, S., & Veciana, G. (2009). Dynamic association for load balancing and interference avoidance in multi-cell networks. IEEE Transactions on Wireless Communications, 8(7), 3566–3576.CrossRef Son, K., Chong, S., & Veciana, G. (2009). Dynamic association for load balancing and interference avoidance in multi-cell networks. IEEE Transactions on Wireless Communications, 8(7), 3566–3576.CrossRef
10.
Zurück zum Zitat Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.CrossRef Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.CrossRef
11.
Zurück zum Zitat Andrews, J., Singh, S., Ye, Q., Lin, X., & Dhillon, H. (2014). An overview of load balancing in hetnets: old myths and open problems. IEEE Wireless Communications, 21(2), 18–25.CrossRef Andrews, J., Singh, S., Ye, Q., Lin, X., & Dhillon, H. (2014). An overview of load balancing in hetnets: old myths and open problems. IEEE Wireless Communications, 21(2), 18–25.CrossRef
12.
Zurück zum Zitat Xie, R., Yu, F. R., Ji, H., & Li, Y. (2012). Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Transactions on Wireless Communications, 11(11), 3910–3920.CrossRef Xie, R., Yu, F. R., Ji, H., & Li, Y. (2012). Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Transactions on Wireless Communications, 11(11), 3910–3920.CrossRef
13.
Zurück zum Zitat Gabriel Gussen, C. M., Belmega, E. V., & Debbah, M. (2011). Pricing and bandwidth allocation problems in wireless multi-tier networks. In 2011 conference record of the forty fifth Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 1633–1637). Gabriel Gussen, C. M., Belmega, E. V., & Debbah, M. (2011). Pricing and bandwidth allocation problems in wireless multi-tier networks. In 2011 conference record of the forty fifth Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 1633–1637).
14.
Zurück zum Zitat Niyato, D., Wang, P., Kim, D. I., Saad, W., & Han, Z. (2016). Mobile energy sharing networks: Performance analysis and optimization. IEEE Transactions on Vehicular Technology, 65(5), 3519–3535.CrossRef Niyato, D., Wang, P., Kim, D. I., Saad, W., & Han, Z. (2016). Mobile energy sharing networks: Performance analysis and optimization. IEEE Transactions on Vehicular Technology, 65(5), 3519–3535.CrossRef
15.
Zurück zum Zitat Li, R., Zhao, Z., Chen, X., Palicot, J., & Zhang, H. (2014). TACT: a transfer actor-critic learning framework for energy saving in cellular radio access networks. IEEE Transactions on Wireless Communications, 13(4), 2000–2011.CrossRef Li, R., Zhao, Z., Chen, X., Palicot, J., & Zhang, H. (2014). TACT: a transfer actor-critic learning framework for energy saving in cellular radio access networks. IEEE Transactions on Wireless Communications, 13(4), 2000–2011.CrossRef
16.
Zurück zum Zitat Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. A Bradford Book. London: MIT Press.MATH Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. A Bradford Book. London: MIT Press.MATH
17.
Zurück zum Zitat Wei, Y., Yu, F. R., Song, M., & Han, Z. (2018). User scheduling and resource allocation in hetnets with hybrid energy supply: An actor-critic reinforcement learning approach. IEEE Transactions on Wireless Communications, 17(1), 680–692.CrossRef Wei, Y., Yu, F. R., Song, M., & Han, Z. (2018). User scheduling and resource allocation in hetnets with hybrid energy supply: An actor-critic reinforcement learning approach. IEEE Transactions on Wireless Communications, 17(1), 680–692.CrossRef
18.
Zurück zum Zitat Spielberg, S. P. K., Gopaluni, R. B., & Loewen, P. D. (2017). Deep reinforcement learning approaches for process control. In 2017 6th international symposium on advanced control of industrial processes (AdCONIP) (pp. 201–206). Spielberg, S. P. K., Gopaluni, R. B., & Loewen, P. D. (2017). Deep reinforcement learning approaches for process control. In 2017 6th international symposium on advanced control of industrial processes (AdCONIP) (pp. 201–206).
19.
Zurück zum Zitat Yu, Y., Wang, T., & Liew, S. C. (2018). Deep-reinforcement learning multiple access for heterogeneous wireless networks. In IEEE international conference on communications (ICC) (pp. 1–7). Yu, Y., Wang, T., & Liew, S. C. (2018). Deep-reinforcement learning multiple access for heterogeneous wireless networks. In IEEE international conference on communications (ICC) (pp. 1–7).
20.
Zurück zum Zitat Wang, W., Wang, X., & Nilsson, A. A. (2006). Energy-efficient bandwidth allocation in wireless networks: Algorithms, analysis, and simulations. IEEE Transactions on Wireless Communications, 5(5), 1103–1114.CrossRef Wang, W., Wang, X., & Nilsson, A. A. (2006). Energy-efficient bandwidth allocation in wireless networks: Algorithms, analysis, and simulations. IEEE Transactions on Wireless Communications, 5(5), 1103–1114.CrossRef
21.
Zurück zum Zitat Grondman, I., Busoniu, L., Lopes, G. A. D., & Babuska, R. (2012). A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics Part C (Applications and Reviews), 42(6), 1291–1307.CrossRef Grondman, I., Busoniu, L., Lopes, G. A. D., & Babuska, R. (2012). A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics Part C (Applications and Reviews), 42(6), 1291–1307.CrossRef
22.
Zurück zum Zitat Mnih V., et al. (2016). Asynchronous methods for deep reinforcement learning. In The 33rd international conference on international conference on machine learning (pp. 1928–1937). Mnih V., et al. (2016). Asynchronous methods for deep reinforcement learning. In The 33rd international conference on international conference on machine learning (pp. 1928–1937).
23.
Zurück zum Zitat Lillicrap T. P., et al. (2016). Continuous control with deep reinforcement learning. In International conference on learning representations (pp. 1–14). Lillicrap T. P., et al. (2016). Continuous control with deep reinforcement learning. In International conference on learning representations (pp. 1–14).
24.
Zurück zum Zitat van Hasselt, Hado, Guez, A., & Silver, D. (2016). Deep reinforcement learning with double Q-learning. In The thirtieth AAAI conference on artificial intelligence (pp. 2094–2100). van Hasselt, Hado, Guez, A., & Silver, D. (2016). Deep reinforcement learning with double Q-learning. In The thirtieth AAAI conference on artificial intelligence (pp. 2094–2100).
25.
Zurück zum Zitat Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.MATH Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.MATH
26.
Zurück zum Zitat Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In The thirteenth international conference on artificial intelligence and statistics (pp. 249–256). Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In The thirteenth international conference on artificial intelligence and statistics (pp. 249–256).
27.
Zurück zum Zitat Wang, K., Chen, L., & Liu, Q. (2014). On optimality of myopic policy for opportunistic access with nonidentical channels and imperfect sensing. IEEE Transactions on Vehicular Technology, 63(5), 2478–2483.CrossRef Wang, K., Chen, L., & Liu, Q. (2014). On optimality of myopic policy for opportunistic access with nonidentical channels and imperfect sensing. IEEE Transactions on Vehicular Technology, 63(5), 2478–2483.CrossRef
28.
Zurück zum Zitat Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In The 3rd international conference for learning representations (pp. 1–15). Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In The 3rd international conference for learning representations (pp. 1–15).
Metadaten
Titel
Actor-critic deep learning for efficient user association and bandwidth allocation in dense mobile networks with green base stations
verfasst von
Quang Vinh Do
Insoo Koo
Publikationsdatum
16.08.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02117-0

Weitere Artikel der Ausgabe 8/2019

Wireless Networks 8/2019 Zur Ausgabe

Neuer Inhalt