Skip to main content

2017 | OriginalPaper | Buchkapitel

Adaptive Control of a Novel Nonlinear Double Convection Chaotic System

verfasst von : Sundarapandian Vaidyanathan, Quanmin Zhu, Ahmad Taher Azar

Erschienen in: Fractional Order Control and Synchronization of Chaotic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research work describes a six-term novel nonlinear double convection chaotic system with two nonlinearities. First, this work presents the 3-D dynamics of the novel nonlinear double convection chaotic system and depicts the phase portraits of the system. Our novel nonlinear double convection chaotic system is obtained by modifying the dynamics of the Rucklidge chaotic system (1992). Next, the qualitative properties of the novel chaotic system are discussed in detail. The novel chaotic system has three equilibrium points. We show that the equilibrium point at the origin is a saddle point, while the other two equilibrium points are saddle-foci. The Lyapunov exponents of the novel nonlinear double convection chaotic system are obtained as \(L_1 = 0.2089\), \(L_2 = 0\) and \(L_3 = -3.2123\). The Lyapunov dimension of the novel chaotic system is obtained as \(D_{L} = 2.0650\). Next, we present the design of adaptive feedback controller for globally stabilizing the trajectories of the novel nonlinear double convection chaotic system with unknown parameters. Furthermore, we present the design of adaptive feedback controller for achieving complete synchronization of the identical novel nonlinear double convection chaotic systems with unknown parameters. The main adaptive control results are proved using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work for the novel nonlinear double convection system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015a). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Germany: Springer. Azar, A. T., & Vaidyanathan, S. (2015a). Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581). Germany: Springer.
2.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015b). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575). Germany: Springer. Azar, A. T., & Vaidyanathan, S. (2015b). Computational intelligence applications in modeling and control. Studies in computational intelligence (Vol. 575). Germany: Springer.
3.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337). Germany: Springer.
4.
Zurück zum Zitat Barrow-Green, J. (1997). Poincaré and the three body problem. American Mathematical Society. Barrow-Green, J. (1997). Poincaré and the three body problem. American Mathematical Society.
5.
Zurück zum Zitat Lorenz, E. N. (1963). Deterministic periodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.CrossRef Lorenz, E. N. (1963). Deterministic periodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.CrossRef
6.
Zurück zum Zitat Sprott, J. C. (2010). Elegant chaos. World Scientific. Sprott, J. C. (2010). Elegant chaos. World Scientific.
7.
Zurück zum Zitat Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397–398.CrossRef Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57(5), 397–398.CrossRef
8.
Zurück zum Zitat Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79, 573–579.MathSciNetMATHCrossRef Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79, 573–579.MathSciNetMATHCrossRef
9.
Zurück zum Zitat Henon, M., & Heiles, C. (1964). The applicability of the third integral Of motion: Some numerical experiments. The Astrophysical Journal, 69, 73–79.MathSciNet Henon, M., & Heiles, C. (1964). The applicability of the third integral Of motion: Some numerical experiments. The Astrophysical Journal, 69, 73–79.MathSciNet
10.
Zurück zum Zitat Genesio, R., & Tesi, A. (1992). Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica, 28(3), 531–548.MATHCrossRef Genesio, R., & Tesi, A. (1992). Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica, 28(3), 531–548.MATHCrossRef
12.
Zurück zum Zitat Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(7), 1465–1466.MathSciNetMATHCrossRef Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(7), 1465–1466.MathSciNetMATHCrossRef
13.
Zurück zum Zitat Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12(3), 659–661.MathSciNetMATHCrossRef Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12(3), 659–661.MathSciNetMATHCrossRef
14.
Zurück zum Zitat Rikitake, T. (1958). Oscillations of a system of disk dynamos. Mathematical Proceedings of the Cambridge Philosophical Society, 54(1), 89–105.MathSciNetMATHCrossRef Rikitake, T. (1958). Oscillations of a system of disk dynamos. Mathematical Proceedings of the Cambridge Philosophical Society, 54(1), 89–105.MathSciNetMATHCrossRef
15.
16.
Zurück zum Zitat Shimizu, T., & Morioka, N. (1980). On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Physics Letters A, 76(3–4), 201–204.MathSciNetCrossRef Shimizu, T., & Morioka, N. (1980). On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Physics Letters A, 76(3–4), 201–204.MathSciNetCrossRef
17.
Zurück zum Zitat Rucklidge, A. M. (1992). Chaos in models of double convection. Journal of Fluid Mechanics, 237, 209–229. Rucklidge, A. M. (1992). Chaos in models of double convection. Journal of Fluid Mechanics, 237, 209–229.
18.
Zurück zum Zitat Pandey, A., Baghel, R. K., & Singh, R. P. (2012). Synchronization analysis of a new autonomous chaotic system with its application in signal masking. IOSR Journal of Electronics and Communication Engineering, 1(5), 16–22.CrossRef Pandey, A., Baghel, R. K., & Singh, R. P. (2012). Synchronization analysis of a new autonomous chaotic system with its application in signal masking. IOSR Journal of Electronics and Communication Engineering, 1(5), 16–22.CrossRef
19.
Zurück zum Zitat Qi, G., & Chen, G. (2006). Analysis and circuit implementation of a new 4D chaotic system. Physics Letters A, 352, 386–397.MATHCrossRef Qi, G., & Chen, G. (2006). Analysis and circuit implementation of a new 4D chaotic system. Physics Letters A, 352, 386–397.MATHCrossRef
21.
Zurück zum Zitat Wei, Z., & Yang, Q. (2010). Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Applied Mathematics and Computation, 217(1), 422–429.MathSciNetMATHCrossRef Wei, Z., & Yang, Q. (2010). Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Applied Mathematics and Computation, 217(1), 422–429.MathSciNetMATHCrossRef
22.
Zurück zum Zitat Zhou, W., Xu, Y., Lu, H., & Pan, L. (2008). On dynamics analysis of a new chaotic attractor. Physics Letters A, 372(36), 5773–5777.MathSciNetMATHCrossRef Zhou, W., Xu, Y., Lu, H., & Pan, L. (2008). On dynamics analysis of a new chaotic attractor. Physics Letters A, 372(36), 5773–5777.MathSciNetMATHCrossRef
23.
Zurück zum Zitat Zhu, C., Liu, Y., & Guo, Y. (2010). Theoretic and numerical study of a new chaotic system. Intelligent Information Management, 2, 104–109.CrossRef Zhu, C., Liu, Y., & Guo, Y. (2010). Theoretic and numerical study of a new chaotic system. Intelligent Information Management, 2, 104–109.CrossRef
24.
Zurück zum Zitat Sundarapandian, V. (2013). Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6(4), 45–52. Sundarapandian, V. (2013). Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6(4), 45–52.
25.
Zurück zum Zitat Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55(7–8), 1904–1915.MathSciNetMATHCrossRef Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55(7–8), 1904–1915.MathSciNetMATHCrossRef
26.
Zurück zum Zitat Dadras, S., & Momeni, H. R. (2009). A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Physics Letters A, 373, 3637–3642.MathSciNetMATHCrossRef Dadras, S., & Momeni, H. R. (2009). A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Physics Letters A, 373, 3637–3642.MathSciNetMATHCrossRef
27.
Zurück zum Zitat Tacha, O. I., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Vaidyanathan, S., & Pham, V. T. (2016). Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Applied Mathematics and Computation, 276, 200–217.MathSciNetMATHCrossRef Tacha, O. I., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Vaidyanathan, S., & Pham, V. T. (2016). Analysis, adaptive control and circuit simulation of a novel nonlinear finance system. Applied Mathematics and Computation, 276, 200–217.MathSciNetMATHCrossRef
28.
Zurück zum Zitat Vaidyanathan, S. (2013a). A new six-term 3-D chaotic system with an exponential nonlinearity. Far East Journal of Mathematical Sciences, 79(1), 135–143.MATH Vaidyanathan, S. (2013a). A new six-term 3-D chaotic system with an exponential nonlinearity. Far East Journal of Mathematical Sciences, 79(1), 135–143.MATH
29.
Zurück zum Zitat Vaidyanathan, S. (2013b). Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of Engineering Science and Technology Review, 6(4), 53–65.MathSciNet Vaidyanathan, S. (2013b). Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of Engineering Science and Technology Review, 6(4), 53–65.MathSciNet
30.
Zurück zum Zitat Vaidyanathan, S. (2014a). A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East Journal of Mathematical Sciences, 84(2), 219–226.MathSciNetMATH Vaidyanathan, S. (2014a). A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East Journal of Mathematical Sciences, 84(2), 219–226.MathSciNetMATH
31.
Zurück zum Zitat Vaidyanathan, S. (2014b). Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics, 223(8), 1519–1529. Vaidyanathan, S. (2014b). Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics, 223(8), 1519–1529.
32.
Zurück zum Zitat Vaidyanathan, S. (2014c). Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 22(1), 41–53.CrossRef Vaidyanathan, S. (2014c). Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 22(1), 41–53.CrossRef
33.
Zurück zum Zitat Vaidyanathan, S. (2014d). Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. International Journal of Modelling, Identification and Control, 22(3), 207–217.CrossRef Vaidyanathan, S. (2014d). Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. International Journal of Modelling, Identification and Control, 22(3), 207–217.CrossRef
34.
Zurück zum Zitat Vaidyanathan, S. (2015b). A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. Journal of Engineering Science and Technology Review, 8(2), 106–115.MathSciNet Vaidyanathan, S. (2015b). A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. Journal of Engineering Science and Technology Review, 8(2), 106–115.MathSciNet
35.
Zurück zum Zitat Vaidyanathan, S. (2015m). Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. International Journal of Modelling, Identification and Control, 23(2), 164–172.MathSciNetCrossRef Vaidyanathan, S. (2015m). Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. International Journal of Modelling, Identification and Control, 23(2), 164–172.MathSciNetCrossRef
36.
Zurück zum Zitat Vaidyanathan, S. (2016a). A novel 2-D chaotic enzymes-substrates reaction system and its adaptive backstepping control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 507–528). Germany: Springer. Vaidyanathan, S. (2016a). A novel 2-D chaotic enzymes-substrates reaction system and its adaptive backstepping control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 507–528). Germany: Springer.
37.
Zurück zum Zitat Vaidyanathan, S. (2016b). A novel 3-D conservative jerk chaotic system with two quadratic nonlinearities and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 349–376). Germany: Springer. Vaidyanathan, S. (2016b). A novel 3-D conservative jerk chaotic system with two quadratic nonlinearities and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 349–376). Germany: Springer.
38.
Zurück zum Zitat Vaidyanathan, S. (2016c). A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control. Archives of Control Sciences, 26(1), 19–47.MathSciNetCrossRef Vaidyanathan, S. (2016c). A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control. Archives of Control Sciences, 26(1), 19–47.MathSciNetCrossRef
39.
Zurück zum Zitat Vaidyanathan, S. (2016d). A novel 4-D hyperchaotic thermal convection system and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 75–100). Germany: Springer. Vaidyanathan, S. (2016d). A novel 4-D hyperchaotic thermal convection system and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 75–100). Germany: Springer.
40.
Zurück zum Zitat Vaidyanathan, S. (2016e). A novel double convecton system, its analysis, adaptive control and synchronization. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 553–579). Germany: Springer. Vaidyanathan, S. (2016e). A novel double convecton system, its analysis, adaptive control and synchronization. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 553–579). Germany: Springer.
41.
Zurück zum Zitat Vaidyanathan, S. (2016f). A seven-term novel 3-D jerk chaotic system with two quadratic nonlinearities and its adaptive backstepping control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 581–607). Germany: Springer. Vaidyanathan, S. (2016f). A seven-term novel 3-D jerk chaotic system with two quadratic nonlinearities and its adaptive backstepping control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 581–607). Germany: Springer.
42.
Zurück zum Zitat Vaidyanathan, S. (2016g). Analysis, adaptive control and synchronization of a novel 3-D chaotic system with a quartic nonlinearity and two quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 429–453). Germany: Springer. Vaidyanathan, S. (2016g). Analysis, adaptive control and synchronization of a novel 3-D chaotic system with a quartic nonlinearity and two quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 429–453). Germany: Springer.
43.
Zurück zum Zitat Vaidyanathan, S. (2016h). Analysis, control and synchronization of a novel 4-D highly hyperchaotic system with hidden attractors. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 529–552). Germany: Springer. Vaidyanathan, S. (2016h). Analysis, control and synchronization of a novel 4-D highly hyperchaotic system with hidden attractors. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 529–552). Germany: Springer.
44.
Zurück zum Zitat Vaidyanathan, S. (2016j). Dynamic analysis, adaptive control and synchronization of a novel highly chaotic system with four quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 405–428). Germany: Springer. Vaidyanathan, S. (2016j). Dynamic analysis, adaptive control and synchronization of a novel highly chaotic system with four quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 405–428). Germany: Springer.
45.
Zurück zum Zitat Vaidyanathan, S. (2016k). Global chaos synchronization of a novel 3-D chaotic system with two quadratic nonlinearities via active and adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 481–506). Germany: Springer. Vaidyanathan, S. (2016k). Global chaos synchronization of a novel 3-D chaotic system with two quadratic nonlinearities via active and adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 481–506). Germany: Springer.
46.
Zurück zum Zitat Vaidyanathan, S. (2016l). Qualitative analysis and properties of a novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 455–480). Germany: Springer. Vaidyanathan, S. (2016l). Qualitative analysis and properties of a novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive control. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 455–480). Germany: Springer.
47.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015b). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modelling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2015b). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modelling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Germany: Springer.
48.
Zurück zum Zitat Vaidyanathan, S., & Madhavan, K. (2013). Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6(2), 121–137. Vaidyanathan, S., & Madhavan, K. (2013). Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6(2), 121–137.
49.
Zurück zum Zitat Vaidyanathan, S., & Pakiriswamy, S. (2015). A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. Journal of Engineering Science and Technology Review, 8(2), 52–60. Vaidyanathan, S., & Pakiriswamy, S. (2015). A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. Journal of Engineering Science and Technology Review, 8(2), 52–60.
50.
Zurück zum Zitat Vaidyanathan, S., & Volos, C. (2015). Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Archives of Control Sciences, 25(3), 333–353.MathSciNetCrossRef Vaidyanathan, S., & Volos, C. (2015). Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Archives of Control Sciences, 25(3), 333–353.MathSciNetCrossRef
51.
Zurück zum Zitat Vaidyanathan, S., Volos, C., Pham, V. T., Madhavan, K., & Idowu, B. A. (2014b). Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 24(3), 375–403.MathSciNetMATHCrossRef Vaidyanathan, S., Volos, C., Pham, V. T., Madhavan, K., & Idowu, B. A. (2014b). Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 24(3), 375–403.MathSciNetMATHCrossRef
52.
Zurück zum Zitat Vaidyanathan, S., Rajagopal, K., Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2015b). Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. Journal of Engineering Science and Technology Review, 8(2), 130–141. Vaidyanathan, S., Rajagopal, K., Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2015b). Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. Journal of Engineering Science and Technology Review, 8(2), 130–141.
53.
Zurück zum Zitat Vaidyanathan, S., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., & Pham, V. T. (2015d). Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 24–36. Vaidyanathan, S., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., & Pham, V. T. (2015d). Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 24–36.
54.
Zurück zum Zitat Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015e). Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 174–184. Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015e). Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 174–184.
55.
Zurück zum Zitat Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015f). Global chaos control of a novel nine-term chaotic system via sliding mode control. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 571–590). Germany: Springer. Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015f). Global chaos control of a novel nine-term chaotic system via sliding mode control. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 571–590). Germany: Springer.
56.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016a). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 203–224). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016a). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 203–224). Germany: Springer.
57.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016b). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 249–274). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016b). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 249–274). Germany: Springer.
58.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016d). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 155–178). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016d). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 155–178). Germany: Springer.
59.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016e). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 275–296). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016e). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 275–296). Germany: Springer.
60.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016f). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 179–202). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016f). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 179–202). Germany: Springer.
61.
Zurück zum Zitat Pehlivan, I., Moroz, I. M., & Vaidyanathan, S. (2014). Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333(20), 5077–5096.CrossRef Pehlivan, I., Moroz, I. M., & Vaidyanathan, S. (2014). Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333(20), 5077–5096.CrossRef
62.
Zurück zum Zitat Sampath, S., Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015). An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 1–6. Sampath, S., Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015). An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. Journal of Engineering Science and Technology Review, 8(2), 1–6.
63.
Zurück zum Zitat Akgul, A., Moroz, I., Pehlivan, I., & Vaidyanathan, S. (2016). A new four-scroll chaotic attractor and its engineering applications. Optik, 127, 5491–5499.CrossRef Akgul, A., Moroz, I., Pehlivan, I., & Vaidyanathan, S. (2016). A new four-scroll chaotic attractor and its engineering applications. Optik, 127, 5491–5499.CrossRef
64.
Zurück zum Zitat Pham, V. T., Vaidyanathan, S., Volos, C. K., & Jafari, S. (2015). Hidden attractors in a chaotic system with an exponential nonlinear term. European Physical Journal—Special Topics, 224(8), 1507–1517. Pham, V. T., Vaidyanathan, S., Volos, C. K., & Jafari, S. (2015). Hidden attractors in a chaotic system with an exponential nonlinear term. European Physical Journal—Special Topics, 224(8), 1507–1517.
65.
Zurück zum Zitat Pham, V. T., Jafari, S., Vaidyanathan, S., Volos, C., & Wang, X. (2016a). A novel memristive neural network with hidden attractors and its circuitry implementation. Science China Technological Sciences, 59(3), 358–363.CrossRef Pham, V. T., Jafari, S., Vaidyanathan, S., Volos, C., & Wang, X. (2016a). A novel memristive neural network with hidden attractors and its circuitry implementation. Science China Technological Sciences, 59(3), 358–363.CrossRef
66.
Zurück zum Zitat Pham, V. T., Vaidyanathan, S., Volos, C., Jafari, S., & Kingni, S. T. (2016b). A no-equilibrium hyperchaotic system with a cubic nonlinear term. Optik, 127(6), 3259–3265.CrossRef Pham, V. T., Vaidyanathan, S., Volos, C., Jafari, S., & Kingni, S. T. (2016b). A no-equilibrium hyperchaotic system with a cubic nonlinear term. Optik, 127(6), 3259–3265.CrossRef
67.
Zurück zum Zitat Pham, V. T., Vaidyanathan, S., Volos, C. K., Jafari, S., Kuznetsov, N. V., & Hoang, T. M. (2016c). A novel memristive time-delay chaotic system without equilibrium points. European Physical Journal: Special Topics, 225(1), 127–136. Pham, V. T., Vaidyanathan, S., Volos, C. K., Jafari, S., Kuznetsov, N. V., & Hoang, T. M. (2016c). A novel memristive time-delay chaotic system without equilibrium points. European Physical Journal: Special Topics, 225(1), 127–136.
68.
Zurück zum Zitat Azar, A. T. (2010). Fuzzy systems. Vienna, Austria: IN-TECH. Azar, A. T. (2010). Fuzzy systems. Vienna, Austria: IN-TECH.
69.
Zurück zum Zitat Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR). USA: IGI-Global. Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR). USA: IGI-Global.
70.
Zurück zum Zitat Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576). Germany: Springer. Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576). Germany: Springer.
71.
Zurück zum Zitat Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzzines and soft computing (Vol. 319). Germany: Springer. Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Studies in fuzzines and soft computing (Vol. 319). Germany: Springer.
72.
Zurück zum Zitat Vaidyanathan, S. (2015p). Anti-synchronization of Mathieu-Van der Pol chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(11), 638–653. Vaidyanathan, S. (2015p). Anti-synchronization of Mathieu-Van der Pol chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(11), 638–653.
73.
Zurück zum Zitat Vaidyanathan, S. (2015t). Global chaos control of Mathieu-Van der pol system via adaptive control method. International Journal of ChemTech Research, 8(9), 406–417.MathSciNet Vaidyanathan, S. (2015t). Global chaos control of Mathieu-Van der pol system via adaptive control method. International Journal of ChemTech Research, 8(9), 406–417.MathSciNet
74.
Zurück zum Zitat Vaidyanathan, S. (2015v). Global chaos synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. International Journal of ChemTech Research, 8(11), 141–151. Vaidyanathan, S. (2015v). Global chaos synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. International Journal of ChemTech Research, 8(11), 141–151.
75.
Zurück zum Zitat Vaidyanathan, S. (2015w). Global chaos synchronization of Mathieu-Van der Pol chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(10), 148–162. Vaidyanathan, S. (2015w). Global chaos synchronization of Mathieu-Van der Pol chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(10), 148–162.
76.
Zurück zum Zitat Vaidyanathan, S. (2015x). Global chaos synchronization of novel coupled Van der Pol conservative chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(8), 95–111. Vaidyanathan, S. (2015x). Global chaos synchronization of novel coupled Van der Pol conservative chaotic systems via adaptive control method. International Journal of ChemTech Research, 8(8), 95–111.
77.
Zurück zum Zitat Vaidyanathan, S. (2015y). Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. International Journal of PharmTech Research, 8(6), 156–166. Vaidyanathan, S. (2015y). Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. International Journal of PharmTech Research, 8(6), 156–166.
78.
Zurück zum Zitat Vaidyanathan, S. (2016i). Anti-synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. International Journal of ChemTech Research, 9(2), 297–304. Vaidyanathan, S. (2016i). Anti-synchronization of Duffing double-well chaotic oscillators via integral sliding mode control. International Journal of ChemTech Research, 9(2), 297–304.
79.
Zurück zum Zitat Li, N., Pan, W., Yan, L., Luo, B., & Zou, X. (2014). Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Communications in Nonlinear Science and Numerical Simulation, 19(6), 1874–1883.CrossRef Li, N., Pan, W., Yan, L., Luo, B., & Zou, X. (2014). Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Communications in Nonlinear Science and Numerical Simulation, 19(6), 1874–1883.CrossRef
80.
Zurück zum Zitat Yuan, G., Zhang, X., & Wang, Z. (2014). Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Optik—International Journal for Light and Electron Optics, 125(8), 1950–1953.CrossRef Yuan, G., Zhang, X., & Wang, Z. (2014). Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Optik—International Journal for Light and Electron Optics, 125(8), 1950–1953.CrossRef
81.
Zurück zum Zitat Vaidyanathan, S. (2015c). A novel chemical chaotic reactor system and its adaptive control. International Journal of ChemTech Research, 8(7), 146–158.MathSciNet Vaidyanathan, S. (2015c). A novel chemical chaotic reactor system and its adaptive control. International Journal of ChemTech Research, 8(7), 146–158.MathSciNet
82.
Zurück zum Zitat Vaidyanathan, S. (2015d). A novel chemical chaotic reactor system and its output regulation via integral sliding mode control. International Journal of ChemTech Research, 8(11), 669–683. Vaidyanathan, S. (2015d). A novel chemical chaotic reactor system and its output regulation via integral sliding mode control. International Journal of ChemTech Research, 8(11), 669–683.
83.
Zurück zum Zitat Vaidyanathan, S. (2015h). Adaptive control design for the anti-synchronization of novel 3-D chemical chaotic reactor systems. International Journal of ChemTech Research, 8(11), 654–668. Vaidyanathan, S. (2015h). Adaptive control design for the anti-synchronization of novel 3-D chemical chaotic reactor systems. International Journal of ChemTech Research, 8(11), 654–668.
84.
Zurück zum Zitat Vaidyanathan, S. (2015i). Adaptive control of a chemical chaotic reactor. International Journal of PharmTech Research, 8(3), 377–382.MathSciNet Vaidyanathan, S. (2015i). Adaptive control of a chemical chaotic reactor. International Journal of PharmTech Research, 8(3), 377–382.MathSciNet
85.
Zurück zum Zitat Vaidyanathan, S. (2015j). Adaptive synchronization of chemical chaotic reactors. International Journal of ChemTech Research, 8(2), 612–621.MathSciNet Vaidyanathan, S. (2015j). Adaptive synchronization of chemical chaotic reactors. International Journal of ChemTech Research, 8(2), 612–621.MathSciNet
86.
Zurück zum Zitat Vaidyanathan, S. (2015l). Adaptive synchronization of novel 3-D chemical chaotic reactor systems. International Journal of ChemTech Research, 8(7), 159–171.MathSciNet Vaidyanathan, S. (2015l). Adaptive synchronization of novel 3-D chemical chaotic reactor systems. International Journal of ChemTech Research, 8(7), 159–171.MathSciNet
87.
Zurück zum Zitat Vaidyanathan, S. (2015n). Anti-synchronization of Brusselator chemical reaction systems via adaptive control. International Journal of ChemTech Research, 8(6), 759–768. Vaidyanathan, S. (2015n). Anti-synchronization of Brusselator chemical reaction systems via adaptive control. International Journal of ChemTech Research, 8(6), 759–768.
88.
Zurück zum Zitat Vaidyanathan, S. (2015o). Anti-synchronization of chemical chaotic reactors via adaptive control method. International Journal of ChemTech Research, 8(8), 73–85. Vaidyanathan, S. (2015o). Anti-synchronization of chemical chaotic reactors via adaptive control method. International Journal of ChemTech Research, 8(8), 73–85.
89.
Zurück zum Zitat Vaidyanathan, S. (2015r). Dynamics and control of Brusselator chemical reaction. International Journal of ChemTech Research, 8(6), 740–749. Vaidyanathan, S. (2015r). Dynamics and control of Brusselator chemical reaction. International Journal of ChemTech Research, 8(6), 740–749.
90.
Zurück zum Zitat Vaidyanathan, S. (2015s). Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. International Journal of ChemTech Research, 8(6), 795–803. Vaidyanathan, S. (2015s). Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. International Journal of ChemTech Research, 8(6), 795–803.
91.
Zurück zum Zitat Vaidyanathan, S. (2015u). Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. International Journal of ChemTech Research, 8(7), 209–221.MathSciNet Vaidyanathan, S. (2015u). Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. International Journal of ChemTech Research, 8(7), 209–221.MathSciNet
92.
Zurück zum Zitat Das, S., Goswami, D., Chatterjee, S., & Mukherjee, S. (2014). Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems. Engineering Applications of Artificial Intelligence, 30, 189–198.CrossRef Das, S., Goswami, D., Chatterjee, S., & Mukherjee, S. (2014). Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems. Engineering Applications of Artificial Intelligence, 30, 189–198.CrossRef
93.
Zurück zum Zitat Kyriazis, M. (1991). Applications of chaos theory to the molecular biology of aging. Experimental Gerontology, 26(6), 569–572.CrossRef Kyriazis, M. (1991). Applications of chaos theory to the molecular biology of aging. Experimental Gerontology, 26(6), 569–572.CrossRef
94.
Zurück zum Zitat Vaidyanathan, S. (2015a). 3-cells cellular neural network (CNN) attractor and its adaptive biological control. International Journal of PharmTech Research, 8(4), 632–640. Vaidyanathan, S. (2015a). 3-cells cellular neural network (CNN) attractor and its adaptive biological control. International Journal of PharmTech Research, 8(4), 632–640.
95.
Zurück zum Zitat Vaidyanathan, S. (2015e). Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. International Journal of PharmTech Research, 8(2), 256–261.MathSciNet Vaidyanathan, S. (2015e). Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. International Journal of PharmTech Research, 8(2), 256–261.MathSciNet
96.
Zurück zum Zitat Vaidyanathan, S. (2015f). Adaptive biological control of generalized Lotka-Volterra three-species biological system. International Journal of PharmTech Research, 8(4), 622–631. Vaidyanathan, S. (2015f). Adaptive biological control of generalized Lotka-Volterra three-species biological system. International Journal of PharmTech Research, 8(4), 622–631.
97.
Zurück zum Zitat Vaidyanathan, S. (2015g). Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. International Journal of PharmTech Research, 8(5), 964–973. Vaidyanathan, S. (2015g). Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. International Journal of PharmTech Research, 8(5), 964–973.
98.
Zurück zum Zitat Vaidyanathan, S. (2015k). Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. International Journal of PharmTech Research, 8(5), 928–937. Vaidyanathan, S. (2015k). Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. International Journal of PharmTech Research, 8(5), 928–937.
99.
Zurück zum Zitat Vaidyanathan, S. (2015q). Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. International Journal of PharmTech Research, 8(5), 956–963. Vaidyanathan, S. (2015q). Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. International Journal of PharmTech Research, 8(5), 956–963.
100.
Zurück zum Zitat Gibson, W. T., & Wilson, W. G. (2013). Individual-based chaos: Extensions of the discrete logistic model. Journal of Theoretical Biology, 339, 84–92.MathSciNetCrossRef Gibson, W. T., & Wilson, W. G. (2013). Individual-based chaos: Extensions of the discrete logistic model. Journal of Theoretical Biology, 339, 84–92.MathSciNetCrossRef
101.
Zurück zum Zitat Suérez, I. (1999). Mastering chaos in ecology. Ecological Modelling, 117(2–3), 305–314.CrossRef Suérez, I. (1999). Mastering chaos in ecology. Ecological Modelling, 117(2–3), 305–314.CrossRef
102.
Zurück zum Zitat Lang, J. (2015). Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Optics Communications, 338, 181–192.CrossRef Lang, J. (2015). Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Optics Communications, 338, 181–192.CrossRef
103.
Zurück zum Zitat Zhang, X., Zhao, Z., & Wang, J. (2014). Chaotic image encryption based on circular substitution box and key stream buffer. Signal Processing: Image Communication, 29(8), 902–913. Zhang, X., Zhao, Z., & Wang, J. (2014). Chaotic image encryption based on circular substitution box and key stream buffer. Signal Processing: Image Communication, 29(8), 902–913.
104.
Zurück zum Zitat Rhouma, R., & Belghith, S. (2011). Cryptoanalysis of a chaos based cryptosystem on DSP. Communications in Nonlinear Science and Numerical Simulation, 16(2), 876–884.MathSciNetMATHCrossRef Rhouma, R., & Belghith, S. (2011). Cryptoanalysis of a chaos based cryptosystem on DSP. Communications in Nonlinear Science and Numerical Simulation, 16(2), 876–884.MathSciNetMATHCrossRef
105.
Zurück zum Zitat Usama, M., Khan, M. K., Alghatbar, K., & Lee, C. (2010). Chaos-based secure satellite imagery cryptosystem. Computers and Mathematics with Applications, 60(2), 326–337.MathSciNetMATHCrossRef Usama, M., Khan, M. K., Alghatbar, K., & Lee, C. (2010). Chaos-based secure satellite imagery cryptosystem. Computers and Mathematics with Applications, 60(2), 326–337.MathSciNetMATHCrossRef
106.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995.CrossRef Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5), 983–995.CrossRef
107.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015a). Adaptive sliding mode control of the Furuta pendulum. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 1–42). Germany: Springer. Azar, A. T., & Serrano, F. E. (2015a). Adaptive sliding mode control of the Furuta pendulum. In A. T. Azar & Q. Zhu (Eds.), Advances and applications in sliding mode control systems. Studies in computational intelligence (Vol. 576, pp. 1–42). Germany: Springer.
108.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015b). Deadbeat control for multivariable systems with time varying delays. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 97–132). Germany: Springer. Azar, A. T., & Serrano, F. E. (2015b). Deadbeat control for multivariable systems with time varying delays. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 97–132). Germany: Springer.
109.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015c). Design and modeling of anti wind up PID controllers. In Q. Zhu & A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319, pp. 1–44). Germany: Springer. Azar, A. T., & Serrano, F. E. (2015c). Design and modeling of anti wind up PID controllers. In Q. Zhu & A. T. Azar (Eds.), Complex system modelling and control through intelligent soft computations. Studies in fuzziness and soft computing (Vol. 319, pp. 1–44). Germany: Springer.
110.
Zurück zum Zitat Azar, A. T., & Serrano, F. E. (2015d). Stabilizatoin and control of mechanical systems with backlash. In A. T. Azar & S. Vaidyanathan (Eds.), Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) (pp. 1–60). USA: IGI-Global. Azar, A. T., & Serrano, F. E. (2015d). Stabilizatoin and control of mechanical systems with backlash. In A. T. Azar & S. Vaidyanathan (Eds.), Handbook of research on advanced intelligent control engineering and automation. Advances in Computational Intelligence and Robotics (ACIR) (pp. 1–60). USA: IGI-Global.
111.
Zurück zum Zitat Feki, M. (2003). An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons and Fractals, 18(1), 141–148.MathSciNetMATHCrossRef Feki, M. (2003). An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons and Fractals, 18(1), 141–148.MathSciNetMATHCrossRef
112.
Zurück zum Zitat Murali, K., & Lakshmanan, M. (1998). Secure communication using a compound signal from generalized chaotic systems. Physics Letters A, 241(6), 303–310.MATHCrossRef Murali, K., & Lakshmanan, M. (1998). Secure communication using a compound signal from generalized chaotic systems. Physics Letters A, 241(6), 303–310.MATHCrossRef
113.
Zurück zum Zitat Zaher, A. A., & Abu-Rezq, A. (2011). On the design of chaos-based secure communication systems. Communications in Nonlinear Systems and Numerical Simulation, 16(9), 3721–3727.MathSciNetMATHCrossRef Zaher, A. A., & Abu-Rezq, A. (2011). On the design of chaos-based secure communication systems. Communications in Nonlinear Systems and Numerical Simulation, 16(9), 3721–3727.MathSciNetMATHCrossRef
114.
Zurück zum Zitat Mondal, S., & Mahanta, C. (2014). Adaptive second order terminal sliding mode controller for robotic manipulators. Journal of the Franklin Institute, 351(4), 2356–2377.MathSciNetCrossRef Mondal, S., & Mahanta, C. (2014). Adaptive second order terminal sliding mode controller for robotic manipulators. Journal of the Franklin Institute, 351(4), 2356–2377.MathSciNetCrossRef
115.
Zurück zum Zitat Nehmzow, U., & Walker, K. (2005). Quantitative description of robot-environment interaction using chaos theory. Robotics and Autonomous Systems, 53(3–4), 177–193.CrossRef Nehmzow, U., & Walker, K. (2005). Quantitative description of robot-environment interaction using chaos theory. Robotics and Autonomous Systems, 53(3–4), 177–193.CrossRef
116.
Zurück zum Zitat Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robotics and Autonomous Systems, 61(12), 1314–1322.CrossRef Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robotics and Autonomous Systems, 61(12), 1314–1322.CrossRef
117.
Zurück zum Zitat Qu, Z. (2011). Chaos in the genesis and maintenance of cardiac arrhythmias. Progress in Biophysics and Molecular Biology, 105(3), 247–257.CrossRef Qu, Z. (2011). Chaos in the genesis and maintenance of cardiac arrhythmias. Progress in Biophysics and Molecular Biology, 105(3), 247–257.CrossRef
118.
Zurück zum Zitat Witte, C. L., & Witte, M. H. (1991). Chaos and predicting varix hemorrhage. Medical Hypotheses, 36(4), 312–317.CrossRef Witte, C. L., & Witte, M. H. (1991). Chaos and predicting varix hemorrhage. Medical Hypotheses, 36(4), 312–317.CrossRef
119.
Zurück zum Zitat Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications, 2(4), 1–28.CrossRef Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications, 2(4), 1–28.CrossRef
120.
Zurück zum Zitat Li, Z., & Chen, G. (2006). Integration of fuzzy logic and chaos theory, studies in fuzziness and soft computing (Vol. 187). Germany: Springer.CrossRef Li, Z., & Chen, G. (2006). Integration of fuzzy logic and chaos theory, studies in fuzziness and soft computing (Vol. 187). Germany: Springer.CrossRef
121.
Zurück zum Zitat Huang, X., Zhao, Z., Wang, Z., & Li, Y. (2012). Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing, 94, 13–21.CrossRef Huang, X., Zhao, Z., Wang, Z., & Li, Y. (2012). Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing, 94, 13–21.CrossRef
122.
Zurück zum Zitat Kaslik, E., & Sivasundaram, S. (2012). Nonlinear dynamics and chaos in fractional-order neural networks. Neural Networks, 32, 245–256.MATHCrossRef Kaslik, E., & Sivasundaram, S. (2012). Nonlinear dynamics and chaos in fractional-order neural networks. Neural Networks, 32, 245–256.MATHCrossRef
123.
Zurück zum Zitat Lian, S., & Chen, X. (2011). Traceable content protection based on chaos and neural networks. Applied Soft Computing, 11(7), 4293–4301.CrossRef Lian, S., & Chen, X. (2011). Traceable content protection based on chaos and neural networks. Applied Soft Computing, 11(7), 4293–4301.CrossRef
124.
Zurück zum Zitat Pham, V. T., Volos, C. K., Vaidyanathan, S., Le, T. P., & Vu, V. Y. (2015b). A memristor-based hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating. Journal of Engineering Science and Technology Review, 8(2), 205–214. Pham, V. T., Volos, C. K., Vaidyanathan, S., Le, T. P., & Vu, V. Y. (2015b). A memristor-based hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating. Journal of Engineering Science and Technology Review, 8(2), 205–214.
125.
Zurück zum Zitat Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Tlelo-Cuautle, E., & Vaidyanathan, S. (2015). Memristor: A new concept in synchronization of coupled neuromorphic circuits. Journal of Engineering Science and Technology Review, 8(2), 157–173. Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Tlelo-Cuautle, E., & Vaidyanathan, S. (2015). Memristor: A new concept in synchronization of coupled neuromorphic circuits. Journal of Engineering Science and Technology Review, 8(2), 157–173.
126.
Zurück zum Zitat Carroll, T. L., & Pecora, L. M. (1991). Synchronizing chaotic circuits. IEEE Transactions on Circuits and Systems, 38(4), 453–456.MATHCrossRef Carroll, T. L., & Pecora, L. M. (1991). Synchronizing chaotic circuits. IEEE Transactions on Circuits and Systems, 38(4), 453–456.MATHCrossRef
127.
128.
Zurück zum Zitat Karthikeyan, R., & Sundarapandian, V. (2014). Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65(2), 97–103.CrossRef Karthikeyan, R., & Sundarapandian, V. (2014). Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65(2), 97–103.CrossRef
129.
Zurück zum Zitat Sarasu, P., & Sundarapandian, V. (2011a). Active controller design for the generalized projective synchronization of four-scroll chaotic systems. International Journal of Systems Signal Control and Engineering Application, 4(2), 26–33. Sarasu, P., & Sundarapandian, V. (2011a). Active controller design for the generalized projective synchronization of four-scroll chaotic systems. International Journal of Systems Signal Control and Engineering Application, 4(2), 26–33.
130.
Zurück zum Zitat Sarasu, P., & Sundarapandian, V. (2011b). The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. International Journal of Soft Computing, 6(5), 216–223.CrossRef Sarasu, P., & Sundarapandian, V. (2011b). The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. International Journal of Soft Computing, 6(5), 216–223.CrossRef
131.
Zurück zum Zitat Sundarapandian, V. (2010). Output regulation of the Lorenz attractor. Far East Journal of Mathematical Sciences, 42(2), 289–299.MathSciNetMATH Sundarapandian, V. (2010). Output regulation of the Lorenz attractor. Far East Journal of Mathematical Sciences, 42(2), 289–299.MathSciNetMATH
132.
Zurück zum Zitat Sundarapandian, V., & Karthikeyan, R. (2012b). Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. Journal of Engineering and Applied Sciences, 7(3), 254–264.CrossRef Sundarapandian, V., & Karthikeyan, R. (2012b). Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. Journal of Engineering and Applied Sciences, 7(3), 254–264.CrossRef
133.
Zurück zum Zitat Vaidyanathan, S. (2011). Hybrid chaos synchronization of Liu and Lu systems by active nonlinear control. Communications in Computer and Information Science, 204, 1–10.CrossRef Vaidyanathan, S. (2011). Hybrid chaos synchronization of Liu and Lu systems by active nonlinear control. Communications in Computer and Information Science, 204, 1–10.CrossRef
134.
Zurück zum Zitat Vaidyanathan, S. (2012d). Output regulation of the Liu chaotic system. Applied Mechanics and Materials, 110–116, 3982–3989. Vaidyanathan, S. (2012d). Output regulation of the Liu chaotic system. Applied Mechanics and Materials, 110–116, 3982–3989.
135.
Zurück zum Zitat Vaidyanathan, S., & Rajagopal, K. (2011a). Anti-synchronization of Li and T chaotic systems by active nonlinear control. Communications in Computer and Information Science, 198, 175–184.CrossRef Vaidyanathan, S., & Rajagopal, K. (2011a). Anti-synchronization of Li and T chaotic systems by active nonlinear control. Communications in Computer and Information Science, 198, 175–184.CrossRef
136.
Zurück zum Zitat Vaidyanathan, S., & Rajagopal, K. (2011b). Global chaos synchronization of hyperchaotic Pang and Wang systems by active nonlinear control. Communications in Computer and Information Science, 204, 84–93.CrossRef Vaidyanathan, S., & Rajagopal, K. (2011b). Global chaos synchronization of hyperchaotic Pang and Wang systems by active nonlinear control. Communications in Computer and Information Science, 204, 84–93.CrossRef
137.
Zurück zum Zitat Vaidyanathan, S., & Rasappan, S. (2011). Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Communications in Computer and Information Science, 198, 10–17.CrossRef Vaidyanathan, S., & Rasappan, S. (2011). Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Communications in Computer and Information Science, 198, 10–17.CrossRef
138.
Zurück zum Zitat Vaidyanathan, S., Pham, V. T., & Volos, C. K. (2015). A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. European Physical Journal: Special Topics, 224(8), 1575–1592. Vaidyanathan, S., Pham, V. T., & Volos, C. K. (2015). A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. European Physical Journal: Special Topics, 224(8), 1575–1592.
139.
Zurück zum Zitat Sarasu, P., & Sundarapandian, V. (2012a). Adaptive controller design for the generalized projective synchronization of 4-scroll systems. International Journal of Systems Signal Control and Engineering Application, 5(2), 21–30. Sarasu, P., & Sundarapandian, V. (2012a). Adaptive controller design for the generalized projective synchronization of 4-scroll systems. International Journal of Systems Signal Control and Engineering Application, 5(2), 21–30.
140.
Zurück zum Zitat Sarasu, P., & Sundarapandian, V. (2012b). Generalized projective synchronization of three-scroll chaotic systems via adaptive control. European Journal of Scientific Research, 72(4), 504–522. Sarasu, P., & Sundarapandian, V. (2012b). Generalized projective synchronization of three-scroll chaotic systems via adaptive control. European Journal of Scientific Research, 72(4), 504–522.
141.
Zurück zum Zitat Sarasu, P., & Sundarapandian, V. (2012c). Generalized projective synchronization of two-scroll systems via adaptive control. International Journal of Soft Computing, 7(4), 146–156.CrossRef Sarasu, P., & Sundarapandian, V. (2012c). Generalized projective synchronization of two-scroll systems via adaptive control. International Journal of Soft Computing, 7(4), 146–156.CrossRef
142.
Zurück zum Zitat Sundarapandian, V., & Karthikeyan, R. (2011a). Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. International Journal of Systmes Signal Control and Engineering Application, 4(2), 18–25. Sundarapandian, V., & Karthikeyan, R. (2011a). Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. International Journal of Systmes Signal Control and Engineering Application, 4(2), 18–25.
143.
Zurück zum Zitat Sundarapandian, V., & Karthikeyan, R. (2011b). Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. European Journal of Scientific Research, 64(1), 94–106. Sundarapandian, V., & Karthikeyan, R. (2011b). Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. European Journal of Scientific Research, 64(1), 94–106.
144.
Zurück zum Zitat Sundarapandian, V., & Karthikeyan, R. (2012a). Adaptive anti-synchronization of uncertain Tigan and Li systems. Journal of Engineering and Applied Sciences, 7(1), 45–52.MATHCrossRef Sundarapandian, V., & Karthikeyan, R. (2012a). Adaptive anti-synchronization of uncertain Tigan and Li systems. Journal of Engineering and Applied Sciences, 7(1), 45–52.MATHCrossRef
145.
Zurück zum Zitat Vaidyanathan, S. (2012b). Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. International Journal of Control Theory and Applications, 5(1), 41–59. Vaidyanathan, S. (2012b). Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. International Journal of Control Theory and Applications, 5(1), 41–59.
146.
Zurück zum Zitat Vaidyanathan, S. (2013c). Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Advances in Intelligent Systems and Computing, 177, 1–10.CrossRef Vaidyanathan, S. (2013c). Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Advances in Intelligent Systems and Computing, 177, 1–10.CrossRef
147.
Zurück zum Zitat Vaidyanathan, S. (2015z). Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 23(4), 380–392.CrossRef Vaidyanathan, S. (2015z). Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 23(4), 380–392.CrossRef
148.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015a). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2015a). Analysis and control of a 4-D novel hyperchaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modeling and control systems design. Studies in computational intelligence (Vol. 581, pp. 19–38). Germany: Springer.
149.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2016c). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 225–247). Germany: Springer. Vaidyanathan, S., & Azar, A. T. (2016c). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 225–247). Germany: Springer.
150.
Zurück zum Zitat Vaidyanathan, S., & Pakiriswamy, S. (2013). Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. International Journal of Control Theory and Applications, 6(2), 153–163. Vaidyanathan, S., & Pakiriswamy, S. (2013). Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. International Journal of Control Theory and Applications, 6(2), 153–163.
151.
Zurück zum Zitat Vaidyanathan, S., & Rajagopal, K. (2011c). Global chaos synchronization of Lü and Pan systems by adaptive nonlinear control. Communications in Computer and Information Science, 205, 193–202.CrossRef Vaidyanathan, S., & Rajagopal, K. (2011c). Global chaos synchronization of Lü and Pan systems by adaptive nonlinear control. Communications in Computer and Information Science, 205, 193–202.CrossRef
152.
Zurück zum Zitat Vaidyanathan, S., & Rajagopal, K. (2012). Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. International Journal of Soft Computing, 7(1), 28–37.MATHCrossRef Vaidyanathan, S., & Rajagopal, K. (2012). Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. International Journal of Soft Computing, 7(1), 28–37.MATHCrossRef
153.
Zurück zum Zitat Vaidyanathan, S., Volos, C., & Pham, V. T. (2014a). Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Archives of Control Sciences, 24(4), 409–446.MathSciNetMATH Vaidyanathan, S., Volos, C., & Pham, V. T. (2014a). Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Archives of Control Sciences, 24(4), 409–446.MathSciNetMATH
154.
Zurück zum Zitat Vaidyanathan, S., Volos, C., Pham, V. T., & Madhavan, K. (2015c). Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Archives of Control Sciences, 25(1), 5–28.MathSciNetCrossRef Vaidyanathan, S., Volos, C., Pham, V. T., & Madhavan, K. (2015c). Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Archives of Control Sciences, 25(1), 5–28.MathSciNetCrossRef
155.
Zurück zum Zitat Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016a). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 681–697). Germany: Springer. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016a). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 681–697). Germany: Springer.
156.
Zurück zum Zitat Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016b). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 699–718). Germany: Springer. Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016b). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing (Vol. 337, pp. 699–718). Germany: Springer.
157.
Zurück zum Zitat Gan, Q., & Liang, Y. (2012). Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. Journal of the Franklin Institute, 349(6), 1955–1971.MathSciNetMATHCrossRef Gan, Q., & Liang, Y. (2012). Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. Journal of the Franklin Institute, 349(6), 1955–1971.MathSciNetMATHCrossRef
158.
Zurück zum Zitat Li, N., Zhang, Y., & Nie, Z. (2011). Synchronization for general complex dynamical networks with sampled-data. Neurocomputing, 74(5), 805–811.CrossRef Li, N., Zhang, Y., & Nie, Z. (2011). Synchronization for general complex dynamical networks with sampled-data. Neurocomputing, 74(5), 805–811.CrossRef
159.
Zurück zum Zitat Xiao, X., Zhou, L., & Zhang, Z. (2014). Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Communications in Nonlinear Science and Numerical Simulation, 19(6), 2039–2047.MathSciNetCrossRef Xiao, X., Zhou, L., & Zhang, Z. (2014). Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Communications in Nonlinear Science and Numerical Simulation, 19(6), 2039–2047.MathSciNetCrossRef
160.
Zurück zum Zitat Zhang, H., & Zhou, J. (2012). Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Systems and Control Letters, 61(12), 1277–1285.MathSciNetMATHCrossRef Zhang, H., & Zhou, J. (2012). Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Systems and Control Letters, 61(12), 1277–1285.MathSciNetMATHCrossRef
161.
Zurück zum Zitat Chen, W. H., Wei, D., & Lu, X. (2014). Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Communications in Nonlinear Science and Numerical Simulation, 19(9), 3298–3312.MathSciNetCrossRef Chen, W. H., Wei, D., & Lu, X. (2014). Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Communications in Nonlinear Science and Numerical Simulation, 19(9), 3298–3312.MathSciNetCrossRef
162.
Zurück zum Zitat Jiang, G. P., Zheng, W. X., & Chen, G. (2004). Global chaos synchronization with channel time-delay. Chaos, Solitons and Fractals, 20(2), 267–275.MathSciNetMATHCrossRef Jiang, G. P., Zheng, W. X., & Chen, G. (2004). Global chaos synchronization with channel time-delay. Chaos, Solitons and Fractals, 20(2), 267–275.MathSciNetMATHCrossRef
163.
Zurück zum Zitat Shahverdiev, E. M., & Shore, K. A. (2009). Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization. Optics Communications, 282(17), 3568–2572.CrossRef Shahverdiev, E. M., & Shore, K. A. (2009). Impact of modulated multiple optical feedback time delays on laser diode chaos synchronization. Optics Communications, 282(17), 3568–2572.CrossRef
164.
Zurück zum Zitat Rasappan, S., & Vaidyanathan, S. (2012a). Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East Journal of Mathematical Sciences, 67(2), 265–287.MathSciNetMATH Rasappan, S., & Vaidyanathan, S. (2012a). Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East Journal of Mathematical Sciences, 67(2), 265–287.MathSciNetMATH
165.
Zurück zum Zitat Rasappan, S., & Vaidyanathan, S. (2012b). Hybrid synchronization of n-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback. Archives of Control Sciences, 22(3), 343–365.MathSciNetMATH Rasappan, S., & Vaidyanathan, S. (2012b). Hybrid synchronization of n-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback. Archives of Control Sciences, 22(3), 343–365.MathSciNetMATH
166.
Zurück zum Zitat Rasappan, S., & Vaidyanathan, S. (2012c). Synchronization of hyperchaotic Liu system via backstepping control with recursive feedback. Communications in Computer and Information Science, 305, 212–221.MATHCrossRef Rasappan, S., & Vaidyanathan, S. (2012c). Synchronization of hyperchaotic Liu system via backstepping control with recursive feedback. Communications in Computer and Information Science, 305, 212–221.MATHCrossRef
167.
Zurück zum Zitat Rasappan, S., & Vaidyanathan, S. (2013). Hybrid synchronization of \(n\)-scroll chaotic Chua circuits using adaptive backstepping control design with recursive feedback. Malaysian Journal of Mathematical Sciences, 7(2), 219–246.MathSciNet Rasappan, S., & Vaidyanathan, S. (2013). Hybrid synchronization of \(n\)-scroll chaotic Chua circuits using adaptive backstepping control design with recursive feedback. Malaysian Journal of Mathematical Sciences, 7(2), 219–246.MathSciNet
168.
Zurück zum Zitat Rasappan, S., & Vaidyanathan, S. (2014). Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Mathematical Journal, 54(1), 293–320.MathSciNetMATHCrossRef Rasappan, S., & Vaidyanathan, S. (2014). Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Mathematical Journal, 54(1), 293–320.MathSciNetMATHCrossRef
169.
Zurück zum Zitat Suresh, R., & Sundarapandian, V. (2013). Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East Journal of Mathematical Sciences, 73(1), 73–95.MATH Suresh, R., & Sundarapandian, V. (2013). Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East Journal of Mathematical Sciences, 73(1), 73–95.MATH
170.
Zurück zum Zitat Vaidyanathan, S., & Rasappan, S. (2014). Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian Journal for Science and Engineering, 39(4), 3351–3364.CrossRef Vaidyanathan, S., & Rasappan, S. (2014). Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian Journal for Science and Engineering, 39(4), 3351–3364.CrossRef
171.
Zurück zum Zitat Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015a). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Studies in Computational Intelligence, 581, 39–58. Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015a). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Studies in Computational Intelligence, 581, 39–58.
172.
Zurück zum Zitat Sundarapandian, V., & Sivaperumal, S. (2011). Sliding controller design of hybrid synchronization of four-wing chaotic systems. International Journal of Soft Computing, 6(5), 224–231.CrossRef Sundarapandian, V., & Sivaperumal, S. (2011). Sliding controller design of hybrid synchronization of four-wing chaotic systems. International Journal of Soft Computing, 6(5), 224–231.CrossRef
173.
Zurück zum Zitat Vaidyanathan, S. (2012a). Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Advances in Intelligent Systems and Computing, 176, 329–337.CrossRef Vaidyanathan, S. (2012a). Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Advances in Intelligent Systems and Computing, 176, 329–337.CrossRef
174.
Zurück zum Zitat Vaidyanathan, S. (2012c). Global chaos control of hyperchaotic Liu system via sliding control method. International Journal of Control Theory and Applications, 5(2), 117–123. Vaidyanathan, S. (2012c). Global chaos control of hyperchaotic Liu system via sliding control method. International Journal of Control Theory and Applications, 5(2), 117–123.
175.
Zurück zum Zitat Vaidyanathan, S. (2012e). Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. International Journal of Control Theory and Applications, 5(1), 15–20. Vaidyanathan, S. (2012e). Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. International Journal of Control Theory and Applications, 5(1), 15–20.
176.
Zurück zum Zitat Vaidyanathan, S. (2014e). Global chaos synchronization of identical Li-Wu chaotic systems via sliding mode control. International Journal of Modelling, Identification and Control, 22(2), 170–177.MathSciNetCrossRef Vaidyanathan, S. (2014e). Global chaos synchronization of identical Li-Wu chaotic systems via sliding mode control. International Journal of Modelling, Identification and Control, 22(2), 170–177.MathSciNetCrossRef
177.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015c). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Studies in Computational Intelligence, 576, 527–547. Vaidyanathan, S., & Azar, A. T. (2015c). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Studies in Computational Intelligence, 576, 527–547.
178.
Zurück zum Zitat Vaidyanathan, S., & Azar, A. T. (2015d). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Studies in Computational Intelligence, 576, 549–569. Vaidyanathan, S., & Azar, A. T. (2015d). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Studies in Computational Intelligence, 576, 549–569.
179.
Zurück zum Zitat Vaidyanathan, S., & Sampath, S. (2011). Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Communications in Computer and Information Science, 205, 156–164.CrossRef Vaidyanathan, S., & Sampath, S. (2011). Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. Communications in Computer and Information Science, 205, 156–164.CrossRef
180.
Zurück zum Zitat Vaidyanathan, S., & Sampath, S. (2012). Anti-synchronization of four-wing chaotic systems via sliding mode control. International Journal of Automation and Computing, 9(3), 274–279.CrossRef Vaidyanathan, S., & Sampath, S. (2012). Anti-synchronization of four-wing chaotic systems via sliding mode control. International Journal of Automation and Computing, 9(3), 274–279.CrossRef
181.
Zurück zum Zitat Khalil, H. K. (2001). Nonlinear systems. New Jersey, USA: Prentice Hall. Khalil, H. K. (2001). Nonlinear systems. New Jersey, USA: Prentice Hall.
Metadaten
Titel
Adaptive Control of a Novel Nonlinear Double Convection Chaotic System
verfasst von
Sundarapandian Vaidyanathan
Quanmin Zhu
Ahmad Taher Azar
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50249-6_12