Skip to main content
Erschienen in: Autonomous Robots 1/2013

01.07.2013

Adaptive splitbelt treadmill walking of a biped robot using nonlinear oscillators with phase resetting

verfasst von: Soichiro Fujiki, Shinya Aoi, Tsuyoshi Yamashita, Tetsuro Funato, Nozomi Tomita, Kei Senda, Kazuo Tsuchiya

Erschienen in: Autonomous Robots | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To investigate the adaptability of a biped robot controlled by nonlinear oscillators with phase resetting based on central pattern generators, we examined the walking behavior of a biped robot on a splitbelt treadmill that has two parallel belts controlled independently. In an experiment, we demonstrated the dynamic interactions among the robot mechanical system, the oscillator control system, and the environment. The robot produced stable walking on the splitbelt treadmill at various belt speeds without changing the control strategy and parameters, despite a large discrepancy between the belt speeds. This is due to modulation of the locomotor rhythm and its phase through the phase resetting mechanism, which induces the relative phase between leg movements to shift from antiphase, and causes the duty factors to be autonomously modulated depending on the speed discrepancy between the belts. Such shifts of the relative phase and modulations of the duty factors are observed during human splitbelt treadmill walking. Clarifying the mechanisms producing such adaptive splitbelt treadmill walking will lead to a better understanding of the phase resetting mechanism in the generation of adaptive locomotion in biological systems and consequently to a guiding principle for designing control systems for legged robots.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aoi, S., Egi, Y., Sugimoto, R., Yamashita, T., Fujiki, S., & Tsuchiya, K. (2012a). Functional roles of phase resetting in the gait transition of a biped robot from quadrupedal to bipedal locomotion. IEEE Transactions on Robotics, 28(6), 1244–1259. Aoi, S., Egi, Y., Sugimoto, R., Yamashita, T., Fujiki, S., & Tsuchiya, K. (2012a). Functional roles of phase resetting in the gait transition of a biped robot from quadrupedal to bipedal locomotion. IEEE Transactions on Robotics, 28(6), 1244–1259.
Zurück zum Zitat Aoi, S., Katayama, D., Fujiki, S., Tomita, N., Funato, T., Yamashita, T., Senda, K., & Tsuchiya, K. (2013a). A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion. Journal of the Royal Society Interface, 10(81), 20120908. Aoi, S., Katayama, D., Fujiki, S., Tomita, N., Funato, T., Yamashita, T., Senda, K., & Tsuchiya, K. (2013a). A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion. Journal of the Royal Society Interface, 10(81), 20120908.
Zurück zum Zitat Aoi, S., Kondo, T., Hayashi, N., Yanagihara, D., Aoki, S., Yamaura, H., Ogihara, N., Funato, T., Tomita, N., Senda, K., & Tsuchiya, K. (2013b). Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: A simulation study. Biological Cybernetics, 107(2), 201–216. Aoi, S., Kondo, T., Hayashi, N., Yanagihara, D., Aoki, S., Yamaura, H., Ogihara, N., Funato, T., Tomita, N., Senda, K., & Tsuchiya, K. (2013b). Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: A simulation study. Biological Cybernetics, 107(2), 201–216.
Zurück zum Zitat Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y., & Tsuchiya, K. (2010). Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biological Cybernetics, 102(5), 373–387.CrossRef Aoi, S., Ogihara, N., Funato, T., Sugimoto, Y., & Tsuchiya, K. (2010). Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biological Cybernetics, 102(5), 373–387.CrossRef
Zurück zum Zitat Aoi, S., Ogihara, N., Funato, T., & Tsuchiya, K. (2012b). Sensory regulation of stance-to-swing transition in generation of adaptive human walking: A simulation study. Robotics and Autonomous Systems, 60(5), 685–691. Aoi, S., Ogihara, N., Funato, T., & Tsuchiya, K. (2012b). Sensory regulation of stance-to-swing transition in generation of adaptive human walking: A simulation study. Robotics and Autonomous Systems, 60(5), 685–691.
Zurück zum Zitat Aoi, S., & Tsuchiya, K. (2005). Locomotion control of a biped robot using nonlinear oscillators. Autonomous Robots, 19(3), 219–232.CrossRef Aoi, S., & Tsuchiya, K. (2005). Locomotion control of a biped robot using nonlinear oscillators. Autonomous Robots, 19(3), 219–232.CrossRef
Zurück zum Zitat Aoi, S., & Tsuchiya, K. (2007). Adaptive behavior in turning of an oscillator-driven biped robot. Autonomous Robots, 23(1), 37–57.MathSciNetCrossRef Aoi, S., & Tsuchiya, K. (2007). Adaptive behavior in turning of an oscillator-driven biped robot. Autonomous Robots, 23(1), 37–57.MathSciNetCrossRef
Zurück zum Zitat Aoi, S., Yamashita, T., & Tsuchiya, K. (2011). Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models. Physical Review E, 83(6), 061909.CrossRef Aoi, S., Yamashita, T., & Tsuchiya, K. (2011). Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models. Physical Review E, 83(6), 061909.CrossRef
Zurück zum Zitat Bosco, G., & Poppele, R. E. (2001). Proprioception from a spinocerebellar perspective. Physiological Reviews, 81, 539–568. Bosco, G., & Poppele, R. E. (2001). Proprioception from a spinocerebellar perspective. Physiological Reviews, 81, 539–568.
Zurück zum Zitat Burke, R. E., Degtyarenko, A. M., & Simon, E. S. (2001). Patterns of locomotor drive to motoneurons and last-order interneurons: Clues to the structure of the CPG. Journal of Neurophysiology, 86, 447–462. Burke, R. E., Degtyarenko, A. M., & Simon, E. S. (2001). Patterns of locomotor drive to motoneurons and last-order interneurons: Clues to the structure of the CPG. Journal of Neurophysiology, 86, 447–462.
Zurück zum Zitat Choi, J. T., & Bastian, A. J. (2007). Adaptation reveals independent control networks for human walking. Nature Neuroscience, 10(8), 1055–1062.CrossRef Choi, J. T., & Bastian, A. J. (2007). Adaptation reveals independent control networks for human walking. Nature Neuroscience, 10(8), 1055–1062.CrossRef
Zurück zum Zitat Collins, S. H., Ruina, A. L., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.CrossRef Collins, S. H., Ruina, A. L., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.CrossRef
Zurück zum Zitat Conway, B. A., Hultborn, H., & Kiehn, O. (1987). Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental Brain Research, 68, 643–656.CrossRef Conway, B. A., Hultborn, H., & Kiehn, O. (1987). Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental Brain Research, 68, 643–656.CrossRef
Zurück zum Zitat Duysens, J. (1977). Fluctuations in sensitivity to rhythm resetting effects during the cat’s step cycle. Brain Research, 133(1), 190–195.CrossRef Duysens, J. (1977). Fluctuations in sensitivity to rhythm resetting effects during the cat’s step cycle. Brain Research, 133(1), 190–195.CrossRef
Zurück zum Zitat Duysens, J., Clarac, F., & Cruse, H. (2000). Load-regulating mechanisms in gait and posture: Comparative aspects. Physiological Reviews, 80, 83–133. Duysens, J., Clarac, F., & Cruse, H. (2000). Load-regulating mechanisms in gait and posture: Comparative aspects. Physiological Reviews, 80, 83–133.
Zurück zum Zitat Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., & Cheng, G. (2008). Learning CPG-based biped locomotion with a policy gradient method: Application to a humanoid robot. International Journal of Robotics Research, 27(2), 213–228.CrossRef Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., & Cheng, G. (2008). Learning CPG-based biped locomotion with a policy gradient method: Application to a humanoid robot. International Journal of Robotics Research, 27(2), 213–228.CrossRef
Zurück zum Zitat Forssberg, H., & Grillner, S. (1973). The locomotion of the acute spinal cat injected with clonidine i.v. Brain Research, 50, 184–186.CrossRef Forssberg, H., & Grillner, S. (1973). The locomotion of the acute spinal cat injected with clonidine i.v. Brain Research, 50, 184–186.CrossRef
Zurück zum Zitat Funato, T., Aoi, S., Oshima, H., & Tsuchiya, K. (2010). Variant and invariant patterns embedded in human locomotion through whole body kinematic coordination. Experimental Brain Research, 205(4), 497–511.CrossRef Funato, T., Aoi, S., Oshima, H., & Tsuchiya, K. (2010). Variant and invariant patterns embedded in human locomotion through whole body kinematic coordination. Experimental Brain Research, 205(4), 497–511.CrossRef
Zurück zum Zitat Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55(2), 247–304.CrossRef Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55(2), 247–304.CrossRef
Zurück zum Zitat Guertin, P. A. (2009). The mammalian central pattern generator for locomotion. Brain Research Reviews, 62, 45–56.CrossRef Guertin, P. A. (2009). The mammalian central pattern generator for locomotion. Brain Research Reviews, 62, 45–56.CrossRef
Zurück zum Zitat Guertin, P., Angel, M. J., Perreault, M.-C., & McCrea, D. A. (1995). Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. Journal of Physiology, 487(1), 197–209. Guertin, P., Angel, M. J., Perreault, M.-C., & McCrea, D. A. (1995). Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. Journal of Physiology, 487(1), 197–209.
Zurück zum Zitat Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.CrossRef Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.CrossRef
Zurück zum Zitat Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.CrossRef Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.CrossRef
Zurück zum Zitat Ito, S., Yuasa, H., Luo, Z., Ito, M., & Yanagihara, D. (1998). A mathematical model of adaptive behavior in quadruped locomotion. Biological Cybernetics, 78, 337–347.MATHCrossRef Ito, S., Yuasa, H., Luo, Z., Ito, M., & Yanagihara, D. (1998). A mathematical model of adaptive behavior in quadruped locomotion. Biological Cybernetics, 78, 337–347.MATHCrossRef
Zurück zum Zitat Kimura, H., Fukuoka, Y., & Cohen, A. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research, 26(5), 475–490.CrossRef Kimura, H., Fukuoka, Y., & Cohen, A. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research, 26(5), 475–490.CrossRef
Zurück zum Zitat Lafreniere-Roula, M., & McCrea, D. A. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. Journal of Neurophysiology, 94, 1120–1132.CrossRef Lafreniere-Roula, M., & McCrea, D. A. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. Journal of Neurophysiology, 94, 1120–1132.CrossRef
Zurück zum Zitat Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.CrossRef Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.CrossRef
Zurück zum Zitat McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57, 134–146.CrossRef McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57, 134–146.CrossRef
Zurück zum Zitat Morton, S. M., & Bastian, A. J. (2006). Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. Journal of Neuroscience, 26(36), 9107–9116.CrossRef Morton, S. M., & Bastian, A. J. (2006). Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. Journal of Neuroscience, 26(36), 9107–9116.CrossRef
Zurück zum Zitat Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47(2–3), 79–91.CrossRef Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47(2–3), 79–91.CrossRef
Zurück zum Zitat Nakanishi, M., Nomura, T., & Sato, S. (2006). Stumbling with optimal phase reset during gait can prevent a humanoid from falling. Biological Cybernetics, 95, 503–515.MATHCrossRef Nakanishi, M., Nomura, T., & Sato, S. (2006). Stumbling with optimal phase reset during gait can prevent a humanoid from falling. Biological Cybernetics, 95, 503–515.MATHCrossRef
Zurück zum Zitat Nomura, T., Kawa, K., Suzuki, Y., Nakanishi, M., & Yamasaki, T. (2009). Dynamic stability and phase resetting during biped gait. Chaos, 19, 026103.MathSciNetCrossRef Nomura, T., Kawa, K., Suzuki, Y., Nakanishi, M., & Yamasaki, T. (2009). Dynamic stability and phase resetting during biped gait. Chaos, 19, 026103.MathSciNetCrossRef
Zurück zum Zitat Orlovsky, G. N., Deliagina, T., & Grillner, S. (1999). Neuronal control of locomotion: From mollusc to man. Oxford: Oxford University Press. Orlovsky, G. N., Deliagina, T., & Grillner, S. (1999). Neuronal control of locomotion: From mollusc to man. Oxford: Oxford University Press.
Zurück zum Zitat Otoda, Y., Kimura, H., & Takase, K. (2009). Construction of a gait adaptation model in human split-belt treadmill walking using a two-dimensional biped robot. Advanced Robotics, 23(5), 535–561.CrossRef Otoda, Y., Kimura, H., & Takase, K. (2009). Construction of a gait adaptation model in human split-belt treadmill walking using a two-dimensional biped robot. Advanced Robotics, 23(5), 535–561.CrossRef
Zurück zum Zitat Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318, 1088–1093.CrossRef Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318, 1088–1093.CrossRef
Zurück zum Zitat Poppele, R. E., & Bosco, G. (2003). Sophisticated spinal contributions to motor control. Trends in Neurosciences, 26, 269–276.CrossRef Poppele, R. E., & Bosco, G. (2003). Sophisticated spinal contributions to motor control. Trends in Neurosciences, 26, 269–276.CrossRef
Zurück zum Zitat Poppele, R. E., Bosco, G., & Rankin, A. M. (2002). Independent representations of limb axis length and orientation in spinocerebellar response components. Journal of Neurophysiology, 87, 409–422. Poppele, R. E., Bosco, G., & Rankin, A. M. (2002). Independent representations of limb axis length and orientation in spinocerebellar response components. Journal of Neurophysiology, 87, 409–422.
Zurück zum Zitat Reisman, D. S., Block, H. J., & Bastian, A. J. (2005). Interlimb coordination during locomotion: What can be adapted and stored? Journal of Neurophysiology, 94, 2403–2415.CrossRef Reisman, D. S., Block, H. J., & Bastian, A. J. (2005). Interlimb coordination during locomotion: What can be adapted and stored? Journal of Neurophysiology, 94, 2403–2415.CrossRef
Zurück zum Zitat Ritzmann, R. E., Quinn, R. D., & Fischer, M. S. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure & Development, 33, 361–379.CrossRef Ritzmann, R. E., Quinn, R. D., & Fischer, M. S. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure & Development, 33, 361–379.CrossRef
Zurück zum Zitat Rybak, I. A., Shevtsova, N. A., Lafreniere-Roula, M., & McCrea, D. A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. Journal of Physiology, 577(2), 617–639.CrossRef Rybak, I. A., Shevtsova, N. A., Lafreniere-Roula, M., & McCrea, D. A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. Journal of Physiology, 577(2), 617–639.CrossRef
Zurück zum Zitat Rybak, I. A., Stecina, K., Shevtsova, N. A., & McCrea, D. A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from the effects of afferent stimulation. Journal of Physiology, 577(2), 641–658.CrossRef Rybak, I. A., Stecina, K., Shevtsova, N. A., & McCrea, D. A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: Insights from the effects of afferent stimulation. Journal of Physiology, 577(2), 641–658.CrossRef
Zurück zum Zitat Schomburg, E. D., Petersen, N., Barajon, I., & Hultborn, H. (1998). Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Experimental Brain Research, 122(3), 339–350.CrossRef Schomburg, E. D., Petersen, N., Barajon, I., & Hultborn, H. (1998). Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Experimental Brain Research, 122(3), 339–350.CrossRef
Zurück zum Zitat Shik, M. L., & Orlovsky, G. N. (1976). Neurophysiology of locomotor automatism. Physiological Reviews, 56(3), 465–501. Shik, M. L., & Orlovsky, G. N. (1976). Neurophysiology of locomotor automatism. Physiological Reviews, 56(3), 465–501.
Zurück zum Zitat Steingrube, S., Timme, M., Wörgötter, F., & Manoonpong, P. (2010). Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Physics, 6, 224–230.CrossRef Steingrube, S., Timme, M., Wörgötter, F., & Manoonpong, P. (2010). Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Physics, 6, 224–230.CrossRef
Zurück zum Zitat Yakovenko, S., Gritsenko, V., & Prochazka, A. (2004). Contribution of stretch reflexes to locomotor control: A modeling study. Biological Cybernetics, 90, 146–155.MATHCrossRef Yakovenko, S., Gritsenko, V., & Prochazka, A. (2004). Contribution of stretch reflexes to locomotor control: A modeling study. Biological Cybernetics, 90, 146–155.MATHCrossRef
Zurück zum Zitat Yamasaki, T., Nomura, T., & Sato, S. (2003a). Phase reset and dynamic stability during human gait. BioSystems, 71, 221–232. Yamasaki, T., Nomura, T., & Sato, S. (2003a). Phase reset and dynamic stability during human gait. BioSystems, 71, 221–232.
Zurück zum Zitat Yamasaki, T., Nomura, T., & Sato, S. (2003b). Possible functional roles of phase resetting during walking. Biological Cybernetics, 88, 468–496. Yamasaki, T., Nomura, T., & Sato, S. (2003b). Possible functional roles of phase resetting during walking. Biological Cybernetics, 88, 468–496.
Zurück zum Zitat Yanagihara, D., & Kondo, I. (1996). Nitric oxide plays a key role in adaptive control of locomotion in cat. Proceedings of the National Academy of Sciences USA, 93, 13292–13297.CrossRef Yanagihara, D., & Kondo, I. (1996). Nitric oxide plays a key role in adaptive control of locomotion in cat. Proceedings of the National Academy of Sciences USA, 93, 13292–13297.CrossRef
Zurück zum Zitat Yanagihara, D., Udo, M., Kondo, I., & Yoshida, T. (1993). A new learning paradigm: Adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Neuroscience Research, 18(3), 241–244.CrossRef Yanagihara, D., Udo, M., Kondo, I., & Yoshida, T. (1993). A new learning paradigm: Adaptive changes in interlimb coordination during perturbed locomotion in decerebrate cats. Neuroscience Research, 18(3), 241–244.CrossRef
Metadaten
Titel
Adaptive splitbelt treadmill walking of a biped robot using nonlinear oscillators with phase resetting
verfasst von
Soichiro Fujiki
Shinya Aoi
Tsuyoshi Yamashita
Tetsuro Funato
Nozomi Tomita
Kei Senda
Kazuo Tsuchiya
Publikationsdatum
01.07.2013
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 1/2013
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-013-9331-6

Weitere Artikel der Ausgabe 1/2013

Autonomous Robots 1/2013 Zur Ausgabe

Neuer Inhalt