Skip to main content

2018 | OriginalPaper | Buchkapitel

2. ADC Architecture

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A successful low-power architecture is extremely important for the high-performance ADC. It helps to save the power dissipation in the systematic level. We focus on the architecture design of the low-power and high-performance ADC in this chapter. First, the traditional architectures, including the flash ADC, the SAR ADC, and the pipelined ADC, are briefly depicted and the limitations are discussed. To try to exceed the limitations, the improvement of the pipelined ADC and the SAR ADC are presented in the following sections. Then to reduce the power dissipation further, two hybrid architectures are discussed. After that, we talk about the time-interleaved ADC. At the end, we sum up the architectures for the low-power and high-performance ADC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.K. Dhawan, K. Kondo, New developments in flash adc’s. IEEE Trans. Nucl. Sci. 31, 821–825 (1984). FebCrossRef S.K. Dhawan, K. Kondo, New developments in flash adc’s. IEEE Trans. Nucl. Sci. 31, 821–825 (1984). FebCrossRef
2.
Zurück zum Zitat W.M. Goodall, Technique for high speed analog-to-digital conversion, U.S. patent 3,599,204, 10 Aug 1971 W.M. Goodall, Technique for high speed analog-to-digital conversion, U.S. patent 3,599,204, 10 Aug 1971
3.
Zurück zum Zitat S.H. Lewis, P.R. Gray, A pipelined 5-msample/s 9-bit analog-to-digital converter. IEEE J. Solid State Circuits 22, 954–961 (1987). DecCrossRef S.H. Lewis, P.R. Gray, A pipelined 5-msample/s 9-bit analog-to-digital converter. IEEE J. Solid State Circuits 22, 954–961 (1987). DecCrossRef
4.
Zurück zum Zitat W. Goodall, Telephony by pulse code modulation. Bell Syst. Tech. J. 26, 395–409 (1947). JulyCrossRef W. Goodall, Telephony by pulse code modulation. Bell Syst. Tech. J. 26, 395–409 (1947). JulyCrossRef
5.
Zurück zum Zitat J. McCreary, P. Gray, All-mos charge redistribution analog-to-digital conversion techniques. I. IEEE J. Solid State Circuits 10, 371–379 (1975). DecCrossRef J. McCreary, P. Gray, All-mos charge redistribution analog-to-digital conversion techniques. I. IEEE J. Solid State Circuits 10, 371–379 (1975). DecCrossRef
6.
Zurück zum Zitat B. Razavi, A tale of two adcs: pipelined versus sar. IEEE Solid-State Circuits Mag. 7, 38–46 (2015) B. Razavi, A tale of two adcs: pipelined versus sar. IEEE Solid-State Circuits Mag. 7, 38–46 (2015)
7.
Zurück zum Zitat I. Mehr, L. Singer, A 55-mw, 10-bit, 40-msample/s nyquist-rate cmos adc. IEEE J. Solid-State Circuits 35, 318–325 (2000). MarchCrossRef I. Mehr, L. Singer, A 55-mw, 10-bit, 40-msample/s nyquist-rate cmos adc. IEEE J. Solid-State Circuits 35, 318–325 (2000). MarchCrossRef
8.
Zurück zum Zitat S. Devarajan, L. Singer, D. Kelly, S. Decker, A. Kamath, P. Wilkins, A 16b 125ms/s 385mw 78.7db snr cmos pipeline adc, in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers (Feb 2009), pp. 86–87,87a S. Devarajan, L. Singer, D. Kelly, S. Decker, A. Kamath, P. Wilkins, A 16b 125ms/s 385mw 78.7db snr cmos pipeline adc, in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers (Feb 2009), pp. 86–87,87a
9.
Zurück zum Zitat X. Wang, C. Yang, X. Zhao, C. Wu, F. Li, Z. Wang, B. Wu, A 12-bit, 270ms/s pipelined adc with sha-eliminating front end, in 2012 IEEE International Symposium on Circuits and Systems (May 2012), pp. 798–801 X. Wang, C. Yang, X. Zhao, C. Wu, F. Li, Z. Wang, B. Wu, A 12-bit, 270ms/s pipelined adc with sha-eliminating front end, in 2012 IEEE International Symposium on Circuits and Systems (May 2012), pp. 798–801
10.
Zurück zum Zitat A.M.A. Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, D. Jarman, J. Brunsilius, P. Derounian, B. Jeffries, U. Mehta, M. McShea, H.Y. Lee, 29.3 a 14b 1gs/s rf sampling pipelined adc with background calibration, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb 2014), pp. 482–483 A.M.A. Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, D. Jarman, J. Brunsilius, P. Derounian, B. Jeffries, U. Mehta, M. McShea, H.Y. Lee, 29.3 a 14b 1gs/s rf sampling pipelined adc with background calibration, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb 2014), pp. 482–483
11.
Zurück zum Zitat L. Xu, C. Zhao, F. Li, C. Zhang, Z. Wang, A improved frontend for high-speed sha-less pipelined adc, in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (June 2014), pp. 1–2 L. Xu, C. Zhao, F. Li, C. Zhang, Z. Wang, A improved frontend for high-speed sha-less pipelined adc, in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (June 2014), pp. 1–2
12.
Zurück zum Zitat M. Brandolini, Y. Shin, K. Raviprakash, T. Wang, R. Wu, H.M. Geddada, Y.J. Ko, Y. Ding, C.S. Huang, W.T. Shin, M.H. Hsieh, W.T. Chou, T. Li, A. Shrivastava, Y.C. Chen, J.J. Hung, G. Cusmai, J. Wu, M.M. Zhang, G. Unruh, A. Venes, H.S. Huang, C.Y. Chen, 26.6 a 5gs/s 150mw 10b sha-less pipelined/sar hybrid adc in 28nm cmos, in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (Feb 2015), pp. 1–3 M. Brandolini, Y. Shin, K. Raviprakash, T. Wang, R. Wu, H.M. Geddada, Y.J. Ko, Y. Ding, C.S. Huang, W.T. Shin, M.H. Hsieh, W.T. Chou, T. Li, A. Shrivastava, Y.C. Chen, J.J. Hung, G. Cusmai, J. Wu, M.M. Zhang, G. Unruh, A. Venes, H.S. Huang, C.Y. Chen, 26.6 a 5gs/s 150mw 10b sha-less pipelined/sar hybrid adc in 28nm cmos, in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (Feb 2015), pp. 1–3
13.
Zurück zum Zitat Y. Ju, F. Li, X. He, C. Zhang, Z. Wang, Aperture error reduction technique for subrange sar adc, in 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS) (June 2016), pp. 1–4 Y. Ju, F. Li, X. He, C. Zhang, Z. Wang, Aperture error reduction technique for subrange sar adc, in 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS) (June 2016), pp. 1–4
14.
Zurück zum Zitat D. Kelly, W. Yang, I. Mehr, M. Sayuk, L. Singer, A 3 v 340 mw 14 b 75 msps cmos adc with 85 db sfdr at nyquist, in 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177) (Feb 2001), pp. 134–135 D. Kelly, W. Yang, I. Mehr, M. Sayuk, L. Singer, A 3 v 340 mw 14 b 75 msps cmos adc with 85 db sfdr at nyquist, in 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177) (Feb 2001), pp. 134–135
15.
Zurück zum Zitat L.A. Singer, T.L. Brooks, A 14-bit 10-mhz calibration-free cmos pipelined a/d converter, in 1996 Symposium on VLSI Circuits. Digest of Technical Papers (June 1996), pp. 94–95 L.A. Singer, T.L. Brooks, A 14-bit 10-mhz calibration-free cmos pipelined a/d converter, in 1996 Symposium on VLSI Circuits. Digest of Technical Papers (June 1996), pp. 94–95
16.
Zurück zum Zitat S. Devarajan, L. Singer, D. Kelly, S. Decker, A. Kamath, P. Wilkins, A 16-bit, 125 ms/s, 385 mw, 78.7 db snr cmos pipeline adc. IEEE J. Solid-State Circuits 44, 3305–3313 (2009). DecCrossRef S. Devarajan, L. Singer, D. Kelly, S. Decker, A. Kamath, P. Wilkins, A 16-bit, 125 ms/s, 385 mw, 78.7 db snr cmos pipeline adc. IEEE J. Solid-State Circuits 44, 3305–3313 (2009). DecCrossRef
17.
Zurück zum Zitat W. Yang, D. Kelly, L. Mehr, M.T. Sayuk, L. Singer, A 3-v 340-mw 14-b 75-msample/s cmos adc with 85-db sfdr at nyquist input. IEEE J. Solid-State Circuits 36, 1931–1936 (2001). DecCrossRef W. Yang, D. Kelly, L. Mehr, M.T. Sayuk, L. Singer, A 3-v 340-mw 14-b 75-msample/s cmos adc with 85-db sfdr at nyquist input. IEEE J. Solid-State Circuits 36, 1931–1936 (2001). DecCrossRef
18.
Zurück zum Zitat B. Murmann, On the use of redundancy in successive approximation a/d converters, in International Conference on Sampling Theory and Applications (Samp TA) (Jul 2013) B. Murmann, On the use of redundancy in successive approximation a/d converters, in International Conference on Sampling Theory and Applications (Samp TA) (Jul 2013)
19.
Zurück zum Zitat T.C. Verster, A method to increase the accuracy of fast-serial-parallel analog-to-digital converters. IEEE Trans. Electron. Comput. EC-13, 471–473 (1964) Aug T.C. Verster, A method to increase the accuracy of fast-serial-parallel analog-to-digital converters. IEEE Trans. Electron. Comput. EC-13, 471–473 (1964) Aug
20.
Zurück zum Zitat S.H. Lewis, H.S. Fetterman, G.F. Gross, R. Ramachandran, T.R. Viswanathan, A 10-b 20-msample/s analog-to-digital converter. IEEE J. Solid State Circuits 27, 351–358 (1992). MarCrossRef S.H. Lewis, H.S. Fetterman, G.F. Gross, R. Ramachandran, T.R. Viswanathan, A 10-b 20-msample/s analog-to-digital converter. IEEE J. Solid State Circuits 27, 351–358 (1992). MarCrossRef
21.
Zurück zum Zitat I. Daubechies, R. DeVore, C.S. Gunturk, V.A. Vaishampayan, Beta expansions: a new approach to digitally corrected a/d conversion, in IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002, vol. 2 (2002), pp. II–784–II–787 I. Daubechies, R. DeVore, C.S. Gunturk, V.A. Vaishampayan, Beta expansions: a new approach to digitally corrected a/d conversion, in IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002, vol. 2 (2002), pp. II–784–II–787
22.
Zurück zum Zitat C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, C.-C. Tsai, A 10b 100ms/s 1.13mw sar adc with binary-scaled error compensation, in 2010 IEEE International on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb 2010) pp. 386–387 C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, C.-C. Tsai, A 10b 100ms/s 1.13mw sar adc with binary-scaled error compensation, in 2010 IEEE International on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb 2010) pp. 386–387
23.
Zurück zum Zitat F. Kuttner, A 1.2v 10b 20m sample/s non-binary successive approximation adc in 0.13 \(\mu \)m cmos, in 2002 IEEE International on Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC, vol. 2 (Feb 2002), pp. 136–137 F. Kuttner, A 1.2v 10b 20m sample/s non-binary successive approximation adc in 0.13 \(\mu \)m cmos, in 2002 IEEE International on Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC, vol. 2 (Feb 2002), pp. 136–137
24.
Zurück zum Zitat C.-C. Liu, Y.-T. Huang, G.-Y. Huang, S.-J. Chang, C.-M. Huang, C.-H. Huang, A 6-bit 220-ms/s time-interleaving sar adc in 0.18-\(\mu \)m digital cmos process, in International Symposium on VLSI Design, Automation and Test, 2009. VLSI-DAT’09 (April 2009), pp. 215–218 C.-C. Liu, Y.-T. Huang, G.-Y. Huang, S.-J. Chang, C.-M. Huang, C.-H. Huang, A 6-bit 220-ms/s time-interleaving sar adc in 0.18-\(\mu \)m digital cmos process, in International Symposium on VLSI Design, Automation and Test, 2009. VLSI-DAT’09 (April 2009), pp. 215–218
25.
Zurück zum Zitat Y.-K. Chang, C.-S. Wang, C.-K. Wang, A 8-bit 500-ks/s low power sar adc for bio-medical applications, in IEEE Asian on Solid-State Circuits Conference, 2007. ASSCC’07 (Nov 2007), pp. 228–231 Y.-K. Chang, C.-S. Wang, C.-K. Wang, A 8-bit 500-ks/s low power sar adc for bio-medical applications, in IEEE Asian on Solid-State Circuits Conference, 2007. ASSCC’07 (Nov 2007), pp. 228–231
26.
Zurück zum Zitat Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, U. Seng-Pan, R.P. Martins, F. Maloberti, A 10-bit 100-ms/s reference-free sar adc in 90 nm cmos. IEEE J. Solid State Circuits 45, 1111–1121 (2010). June Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, U. Seng-Pan, R.P. Martins, F. Maloberti, A 10-bit 100-ms/s reference-free sar adc in 90 nm cmos. IEEE J. Solid State Circuits 45, 1111–1121 (2010). June
27.
Zurück zum Zitat S.-W. Chen, R. Brodersen, A 6-bit 600-ms/s 5.3-mw asynchronous adc in 0.13-\(\mu \)m cmos. IEEE J. Solid State Circuits 41, 2669–2680 (2006). DecCrossRef S.-W. Chen, R. Brodersen, A 6-bit 600-ms/s 5.3-mw asynchronous adc in 0.13-\(\mu \)m cmos. IEEE J. Solid State Circuits 41, 2669–2680 (2006). DecCrossRef
28.
Zurück zum Zitat H. Wei, C.-H. Chan, U.-F. Chio, S.-W. Sin, U. Seng-Pan, R. Martins, F. Maloberti, An 8-b 400-ms/s 2-b-per-cycle sar adc with resistive dac. IEEE J. Solid State Circuits 47, 2763–2772 (2012) Nov H. Wei, C.-H. Chan, U.-F. Chio, S.-W. Sin, U. Seng-Pan, R. Martins, F. Maloberti, An 8-b 400-ms/s 2-b-per-cycle sar adc with resistive dac. IEEE J. Solid State Circuits 47, 2763–2772 (2012) Nov
29.
Zurück zum Zitat Z. Cao, S. Yan, Y. Li, A 32 mw 1.25 gs/s 6b 2b/step sar adc in 0.13 \(\mu \)m cmos. IEEE J. Solid State Circuits 44, 862–873 (2009). MarchCrossRef Z. Cao, S. Yan, Y. Li, A 32 mw 1.25 gs/s 6b 2b/step sar adc in 0.13 \(\mu \)m cmos. IEEE J. Solid State Circuits 44, 862–873 (2009). MarchCrossRef
30.
Zurück zum Zitat C.-H. Chan, Y. Zhu, S.-W. Sin, U. Seng-Pan, R. Martins, A 5.5mw 6b 5gs/s 4x-lnterleaved 3b/cycle sar adc in 65nm cmos, in 2015 IEEE International on Solid- State Circuits Conference-(ISSCC) (Feb 2015), pp. 1–3 C.-H. Chan, Y. Zhu, S.-W. Sin, U. Seng-Pan, R. Martins, A 5.5mw 6b 5gs/s 4x-lnterleaved 3b/cycle sar adc in 65nm cmos, in 2015 IEEE International on Solid- State Circuits Conference-(ISSCC) (Feb 2015), pp. 1–3
31.
Zurück zum Zitat Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, T. Kuroda, Split capacitor dac mismatch calibration in successive approximation adc, in Custom Integrated Circuits Conference, 2009. CICC’09. IEEE (Sept 2009), pp. 279–282 Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, T. Kuroda, Split capacitor dac mismatch calibration in successive approximation adc, in Custom Integrated Circuits Conference, 2009. CICC’09. IEEE (Sept 2009), pp. 279–282
Metadaten
Titel
ADC Architecture
verfasst von
Weitao Li
Fule Li
Zhihua Wang
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62012-1_2

Neuer Inhalt