Skip to main content

2019 | OriginalPaper | Buchkapitel

Additive Manufacturing: Current Concepts, Methods, and Applications in Oral Health Care

verfasst von : Jagat Bhushan, Vishakha Grover

Erschienen in: Biomanufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing is an emerging technique that has almost revolutionized the material science and mechanical engineering in recent years. The technique started to help engineers to actualize the concepts of their minds by fabricating diverse three-dimensional objects in a layer-by-layer fashion. Multitude of processes such as stereolithography (SL), polyjet, fused deposition modeling (FDM), laminated object manufacturing (LOM), 3D printing (3DP), prometal, selective laser sintering (SLS), laser engineered net shaping (LENS), and electron beam melting (EBM) is considered as a part of additive manufacturing. Recently, additive manufacturing has received a lot of attention in the healthcare sector for fabricating devices for the purpose to restore, support, and repair defected human body parts. Particularly, the field of dentistry rather extensively deals with such restorative work in order to improve the functional and aesthetic demands of today’s oral healthcare sector. This chapter shall present a focussed update on the current concepts, methods and diverse applications in the field of oral health care, based on contemporary published literature relevant to the subject. Further, it shall provide the future scope of research to address the challenges, for the widespread clinical utilization of additive manufacturing technologies in routine clinical dental care.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brown C (2015) Additive manufacturing: it’s a positive thing. Inside Dent Technol 6(3):50–51 Brown C (2015) Additive manufacturing: it’s a positive thing. Inside Dent Technol 6(3):50–51
2.
Zurück zum Zitat Noort RV (2012) The future of dental devices is digital. Dent Mater 28:3–12CrossRef Noort RV (2012) The future of dental devices is digital. Dent Mater 28:3–12CrossRef
3.
Zurück zum Zitat Jain R, Supriya Bindra S, Gupta K (2016) Recent trends of 3-D printing in dentistry—a review. Ann Prosthodont Restrorat Dent 2(4):101–104CrossRef Jain R, Supriya Bindra S, Gupta K (2016) Recent trends of 3-D printing in dentistry—a review. Ann Prosthodont Restrorat Dent 2(4):101–104CrossRef
4.
Zurück zum Zitat Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219(11):521–525CrossRef Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219(11):521–525CrossRef
5.
Zurück zum Zitat Liu Q, Leu MC, Schmitt SM (2006) Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 29:317–335CrossRef Liu Q, Leu MC, Schmitt SM (2006) Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 29:317–335CrossRef
6.
Zurück zum Zitat Ashley S (1991) Rapid prototyping systems. Mech Eng 113(4):34 Ashley S (1991) Rapid prototyping systems. Mech Eng 113(4):34
7.
Zurück zum Zitat Noorani R (2006) Rapid prototyping—principles and applications. Wiley, Hoboken Noorani R (2006) Rapid prototyping—principles and applications. Wiley, Hoboken
8.
Zurück zum Zitat Flowers J, Moniz M (2002) Rapid prototyping in technology education. Technol Teach 62(3):7 Flowers J, Moniz M (2002) Rapid prototyping in technology education. Technol Teach 62(3):7
9.
Zurück zum Zitat Chua CK, Chou SM, Lin SC, Eu KH, Lew KH (1998) Rapid prototyping assisted surgery planning. Int J Adv Manuf Technol 14(9):624–630CrossRef Chua CK, Chou SM, Lin SC, Eu KH, Lew KH (1998) Rapid prototyping assisted surgery planning. Int J Adv Manuf Technol 14(9):624–630CrossRef
10.
Zurück zum Zitat Cooper K (2001) Rapid prototyping technology. Marcel Dekker, New YorkCrossRef Cooper K (2001) Rapid prototyping technology. Marcel Dekker, New YorkCrossRef
11.
Zurück zum Zitat Kruth PP (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann Manuf Technol 40(2):603–614CrossRef Kruth PP (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann Manuf Technol 40(2):603–614CrossRef
13.
Zurück zum Zitat See CV, Meindorfer M (2016) 3D printing: additive processes in dentistry. Laboratory, May 2016 See CV, Meindorfer M (2016) 3D printing: additive processes in dentistry. Laboratory, May 2016
14.
Zurück zum Zitat Halloran JW, Tomeckova V, Gentry S et al (2011) Photopolymerization of powder suspensions for shaping ceramics. J Eur Ceram Soc 31(14):2613–2619CrossRef Halloran JW, Tomeckova V, Gentry S et al (2011) Photopolymerization of powder suspensions for shaping ceramics. J Eur Ceram Soc 31(14):2613–2619CrossRef
15.
Zurück zum Zitat Driesche SVD, Lucklum F, Bunge M, Vellekoop MJ (2018) 3D printing solutions for microfluidic chip-to-world connections. Micromachines 9(2):71CrossRef Driesche SVD, Lucklum F, Bunge M, Vellekoop MJ (2018) 3D printing solutions for microfluidic chip-to-world connections. Micromachines 9(2):71CrossRef
16.
Zurück zum Zitat Emilia M, Marek M, Łukasz Z, Sonia S, Patryk K, Dariusz M (2014) 3D printing technologies in rehabilitation engineering (Technologiedruku 3D w inżynieriirehabilitacyjnej). J Health Sci 4(12):78–83. ISSN 1429-9623/2300-665X Emilia M, Marek M, Łukasz Z, Sonia S, Patryk K, Dariusz M (2014) 3D printing technologies in rehabilitation engineering (Technologiedruku 3D w inżynieriirehabilitacyjnej). J Health Sci 4(12):78–83. ISSN 1429-9623/2300-665X
17.
Zurück zum Zitat Dawood A, Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529CrossRef Dawood A, Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529CrossRef
21.
Zurück zum Zitat Zaharia C, Gabor AG, Gavrilovici A, Stan AT, Idorasi L, Sinescu C, Negruțiu M (2017) Digital dentistry—3D printing applications. J Interdisc Med 2(1):50–53CrossRef Zaharia C, Gabor AG, Gavrilovici A, Stan AT, Idorasi L, Sinescu C, Negruțiu M (2017) Digital dentistry—3D printing applications. J Interdisc Med 2(1):50–53CrossRef
22.
Zurück zum Zitat Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef
23.
Zurück zum Zitat Attar H, Calin M, Zhang L, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A 593:170–177CrossRef Attar H, Calin M, Zhang L, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A 593:170–177CrossRef
24.
Zurück zum Zitat Vaithilingam J, Kilsby S, Goodridge RD, Christie SD, Edmondson S, Hague RJ (2015) Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater Sci Eng C 46:52–61CrossRef Vaithilingam J, Kilsby S, Goodridge RD, Christie SD, Edmondson S, Hague RJ (2015) Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound. Mater Sci Eng C 46:52–61CrossRef
25.
Zurück zum Zitat Carlton HD, Haboub A, Gallegos GF, Parkinson DY, MacDowell AA (2016) Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651:406–414CrossRef Carlton HD, Haboub A, Gallegos GF, Parkinson DY, MacDowell AA (2016) Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651:406–414CrossRef
26.
Zurück zum Zitat Casalino G, Campanelli S, Contuzzi N, Ludovico A (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Optic Laser Technol 65:151–158CrossRef Casalino G, Campanelli S, Contuzzi N, Ludovico A (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Optic Laser Technol 65:151–158CrossRef
27.
Zurück zum Zitat Murr LE, Martinez E, Hernandez J, Collins S, Amato KN, Gaytan SM, Shindo PW (2012) Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J Mater Res Technol 1(3):167–177CrossRef Murr LE, Martinez E, Hernandez J, Collins S, Amato KN, Gaytan SM, Shindo PW (2012) Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J Mater Res Technol 1(3):167–177CrossRef
28.
Zurück zum Zitat Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3-D components. J Occup Med (JOM) 49(5):55–60 Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3-D components. J Occup Med (JOM) 49(5):55–60
29.
Zurück zum Zitat Brice C, Shenoy R, Kral M, Buchannan K (2015) Precipitation behaviour of aluminium alloy 2139 fabricated using additive manufacturing. Mater Sci Eng A 648:9–14CrossRef Brice C, Shenoy R, Kral M, Buchannan K (2015) Precipitation behaviour of aluminium alloy 2139 fabricated using additive manufacturing. Mater Sci Eng A 648:9–14CrossRef
30.
Zurück zum Zitat Demir AG, Previtali B (2017) Additive manufacturing of cardiovascular Co–Cr stents by selective laser melting. Mater Des 119:338–350CrossRef Demir AG, Previtali B (2017) Additive manufacturing of cardiovascular Co–Cr stents by selective laser melting. Mater Des 119:338–350CrossRef
31.
Zurück zum Zitat Gieseke M, Noelke C, Kaierle S, Wesling V, Haferkamp H (2013) Selective laser melting of magnesium and magnesium alloys. In: Magnesium technology. Springer, Cham, pp 65–68 Gieseke M, Noelke C, Kaierle S, Wesling V, Haferkamp H (2013) Selective laser melting of magnesium and magnesium alloys. In: Magnesium technology. Springer, Cham, pp 65–68
32.
Zurück zum Zitat Khan M, Dickens P (2010) Selective laser melting (SLM) of pure gold. Gold Bull 43(2):114–121CrossRef Khan M, Dickens P (2010) Selective laser melting (SLM) of pure gold. Gold Bull 43(2):114–121CrossRef
33.
Zurück zum Zitat Ramirez D, Murr L, Martinez E, Hernandez D, Martinez J, Machado B, Medina F, Frigola P, Wicker R (2011) Novel precipitate–microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater 59(10):4088–4099CrossRef Ramirez D, Murr L, Martinez E, Hernandez D, Martinez J, Machado B, Medina F, Frigola P, Wicker R (2011) Novel precipitate–microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater 59(10):4088–4099CrossRef
34.
Zurück zum Zitat Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Appl Sci Manuf 76:110–114CrossRef Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Appl Sci Manuf 76:110–114CrossRef
35.
Zurück zum Zitat Yang J-u, Cho JH, Yoo MJ (2017) Selective metallization on copper aluminate composite via laser direct structuring technology. Compos B Eng 110:361–367CrossRef Yang J-u, Cho JH, Yoo MJ (2017) Selective metallization on copper aluminate composite via laser direct structuring technology. Compos B Eng 110:361–367CrossRef
36.
Zurück zum Zitat Zhuang Y, Song W, Ning G, Sun X, Sun Z, Xu G, Zhang B, Chen Y, Tao S (2017) 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Mater Des 126:135–140CrossRef Zhuang Y, Song W, Ning G, Sun X, Sun Z, Xu G, Zhang B, Chen Y, Tao S (2017) 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Mater Des 126:135–140CrossRef
37.
Zurück zum Zitat Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530CrossRef Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530CrossRef
38.
Zurück zum Zitat Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L (2017) 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci 5(9):1690–1698CrossRef Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L (2017) 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci 5(9):1690–1698CrossRef
39.
Zurück zum Zitat Ngoa TD, Kashania A, Imbalzanoa G, Nguyena KTQ, Huib D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B 143:172–196CrossRef Ngoa TD, Kashania A, Imbalzanoa G, Nguyena KTQ, Huib D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B 143:172–196CrossRef
40.
Zurück zum Zitat Lal K, White GS, Morea DN, Wright RF (2006) Use of stereolithographic templates for surgical and prosthodontic implant planning and placement. Part I. The concept. J Prosthodont 15:51–58CrossRef Lal K, White GS, Morea DN, Wright RF (2006) Use of stereolithographic templates for surgical and prosthodontic implant planning and placement. Part I. The concept. J Prosthodont 15:51–58CrossRef
41.
Zurück zum Zitat Zhou Z, Buchanan F, Mitchell C, Dunne N (2014) Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C Mater Biol Appl 38:1–10CrossRef Zhou Z, Buchanan F, Mitchell C, Dunne N (2014) Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C Mater Biol Appl 38:1–10CrossRef
42.
Zurück zum Zitat Sykes LM, Parrott AM, Owen CP, Snaddon DR (2004) Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 17:454–459PubMed Sykes LM, Parrott AM, Owen CP, Snaddon DR (2004) Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 17:454–459PubMed
44.
Zurück zum Zitat vanRoekel NB (1992) Electircal discharge machining in dentistry. Int J Prosthodont 5:114–121 vanRoekel NB (1992) Electircal discharge machining in dentistry. Int J Prosthodont 5:114–121
45.
Zurück zum Zitat Winder J, Bibb R (2005) Medcial rapid prototyping technologies: state of the art and current limitations for applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015CrossRef Winder J, Bibb R (2005) Medcial rapid prototyping technologies: state of the art and current limitations for applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015CrossRef
46.
Zurück zum Zitat Bibb R, Brown R (2000) The application of computer aided product development techniques in medical modeling topic: rehabilitation and prostheses. Biomed Sci Instrum 36:319–324PubMed Bibb R, Brown R (2000) The application of computer aided product development techniques in medical modeling topic: rehabilitation and prostheses. Biomed Sci Instrum 36:319–324PubMed
47.
Zurück zum Zitat Joffe J, Harris M, Kahugu F et al (1999) A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome. Br J Neurosurg 13:576–580CrossRef Joffe J, Harris M, Kahugu F et al (1999) A prospective study of computer-aided design and manufacture of titanium plate for cranioplasty and its clinical outcome. Br J Neurosurg 13:576–580CrossRef
48.
Zurück zum Zitat Winder J, Cook RS, Gray J et al (1999) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol 23:26–28CrossRef Winder J, Cook RS, Gray J et al (1999) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol 23:26–28CrossRef
49.
Zurück zum Zitat Bartlett P, Carter L, Russell JL (2009) The leeds method for titanium cranioplasty construction. Brit J Oral Maxillofac Surg 47:238–240CrossRef Bartlett P, Carter L, Russell JL (2009) The leeds method for titanium cranioplasty construction. Brit J Oral Maxillofac Surg 47:238–240CrossRef
50.
Zurück zum Zitat Eufinger H, Wehmoller M (1998) Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases. Plast Reconstruct Surg 102:300–308CrossRef Eufinger H, Wehmoller M (1998) Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases. Plast Reconstruct Surg 102:300–308CrossRef
51.
Zurück zum Zitat Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering. Biomaterials 23:1169–1185CrossRef Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering. Biomaterials 23:1169–1185CrossRef
52.
Zurück zum Zitat Centola M, Rainer A, Spadaccio C et al (2010) Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2(1):014102CrossRef Centola M, Rainer A, Spadaccio C et al (2010) Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2(1):014102CrossRef
53.
Zurück zum Zitat Chen M, Le DQ, Baatrup A et al (2011) Self assembly composite matrix in a hierarchical 3D scaffold for bone tissue engineering. Acta Biomater 7(5):2244–2255CrossRef Chen M, Le DQ, Baatrup A et al (2011) Self assembly composite matrix in a hierarchical 3D scaffold for bone tissue engineering. Acta Biomater 7(5):2244–2255CrossRef
54.
Zurück zum Zitat Wiggenhauser PS, Muller DF, Melchels FP et al (2011) Engineering of vascularized adipose constructs. Cell Tissue Res 347(3):747–757CrossRef Wiggenhauser PS, Muller DF, Melchels FP et al (2011) Engineering of vascularized adipose constructs. Cell Tissue Res 347(3):747–757CrossRef
55.
Zurück zum Zitat Ponader S, von Wilmowsky C, Widenmayer M et al (2010) In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J Biomed Mater Res 92A:56–62CrossRef Ponader S, von Wilmowsky C, Widenmayer M et al (2010) In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J Biomed Mater Res 92A:56–62CrossRef
56.
Zurück zum Zitat Murr LE, Amato KN, Li SJ et al (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4:1396–1411CrossRef Murr LE, Amato KN, Li SJ et al (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4:1396–1411CrossRef
57.
Zurück zum Zitat Mueller AA, Paysan P, Schumacher R et al (2011) Missing facial parts computed by a morphable model and transferred directly to a polyamide laser-sintered prosthesis: an innovation study. Brit J Oral Maxillofac Surg 49(8):e67–e71CrossRef Mueller AA, Paysan P, Schumacher R et al (2011) Missing facial parts computed by a morphable model and transferred directly to a polyamide laser-sintered prosthesis: an innovation study. Brit J Oral Maxillofac Surg 49(8):e67–e71CrossRef
58.
Zurück zum Zitat Rimmell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical application. J Biomed Mat Res 53:414–420CrossRef Rimmell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical application. J Biomed Mat Res 53:414–420CrossRef
59.
Zurück zum Zitat Sudarmadji N, Tan JY, Leong KF et al (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7:530–537CrossRef Sudarmadji N, Tan JY, Leong KF et al (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7:530–537CrossRef
60.
Zurück zum Zitat Leong KF, Wiria FR, Chua CK, Li SH (2007) Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng 17:147–157PubMed Leong KF, Wiria FR, Chua CK, Li SH (2007) Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng 17:147–157PubMed
61.
Zurück zum Zitat Zhang Y, Hao L, Savalani MM et al (2008) Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. J Biomed Mater Res A 86:607–616CrossRef Zhang Y, Hao L, Savalani MM et al (2008) Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. J Biomed Mater Res A 86:607–616CrossRef
62.
Zurück zum Zitat Fukuda A, Takemoto M, Saito T et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7:2327–2336CrossRef Fukuda A, Takemoto M, Saito T et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7:2327–2336CrossRef
63.
Zurück zum Zitat Mullen L, Stamp RC, Brooks WK et al (2009) Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J Biomed Mater Res Appl Biomater 89B:325–334CrossRef Mullen L, Stamp RC, Brooks WK et al (2009) Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J Biomed Mater Res Appl Biomater 89B:325–334CrossRef
64.
Zurück zum Zitat Traini T, Mangano C, Sammons RL et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Mater 24:1525–1533CrossRef Traini T, Mangano C, Sammons RL et al (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Mater 24:1525–1533CrossRef
65.
Zurück zum Zitat Tara MA, Eschbach S, Bohlsen F, Kern M (2011) Clinical outcome of metal–ceramic crowns fabricated with laser-sintering technology. Int J Prosthodont 24:46–48PubMed Tara MA, Eschbach S, Bohlsen F, Kern M (2011) Clinical outcome of metal–ceramic crowns fabricated with laser-sintering technology. Int J Prosthodont 24:46–48PubMed
66.
Zurück zum Zitat Williams RJ, Bibb R, Eggbeer D, Collis J (2006) Use of CAD/CAM technology to fabricate a removable partial denture framework. J Prosthet Dent 96:96–99CrossRef Williams RJ, Bibb R, Eggbeer D, Collis J (2006) Use of CAD/CAM technology to fabricate a removable partial denture framework. J Prosthet Dent 96:96–99CrossRef
67.
Zurück zum Zitat Xiao K, Dalgarno KW, Wood DJ, Goodridge RD, Ohtsuki C (2008) Indirect selective laser sintering of apatite–wollostonite glass–ceramic. Proc Inst Mech Eng H 222:1107–1114CrossRef Xiao K, Dalgarno KW, Wood DJ, Goodridge RD, Ohtsuki C (2008) Indirect selective laser sintering of apatite–wollostonite glass–ceramic. Proc Inst Mech Eng H 222:1107–1114CrossRef
68.
Zurück zum Zitat Silva NRFA, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J (2011) Additive CAD/CAM process for dental prostheses. J Prosthont 20:93–96 Silva NRFA, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J (2011) Additive CAD/CAM process for dental prostheses. J Prosthont 20:93–96
69.
Zurück zum Zitat Schuurman W, Khristov V, Pot MW et al (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001 [Epub 2011 May 20]CrossRef Schuurman W, Khristov V, Pot MW et al (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001 [Epub 2011 May 20]CrossRef
70.
Zurück zum Zitat Shanjani Y, Amritha De Croos N, Pilliar R et al (2010) Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J Biomed Mater Res Appl Biomater 93B:510–519CrossRef Shanjani Y, Amritha De Croos N, Pilliar R et al (2010) Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes. J Biomed Mater Res Appl Biomater 93B:510–519CrossRef
71.
Zurück zum Zitat Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704 Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704
72.
Zurück zum Zitat Garcia-Gonzalez D, Garzon-Hernandez S, Arias A (2018) A new constitutive model for polymeric matrices: application to biomedical materials. Compos B Eng 139:117–129CrossRef Garcia-Gonzalez D, Garzon-Hernandez S, Arias A (2018) A new constitutive model for polymeric matrices: application to biomedical materials. Compos B Eng 139:117–129CrossRef
73.
Zurück zum Zitat Jardini AL, Larosa MA, MacielFilho R, de CarvalhoZavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P (2014) Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio Maxillofac Surg 42(8):1877–1884CrossRef Jardini AL, Larosa MA, MacielFilho R, de CarvalhoZavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P (2014) Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio Maxillofac Surg 42(8):1877–1884CrossRef
74.
Zurück zum Zitat Banks J (2013) Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6):22–26CrossRef Banks J (2013) Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6):22–26CrossRef
76.
Zurück zum Zitat Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Green GE, Hollister SJ, Weatherwax KJ (2015) Regulatory considerations in the design and manufacturing of implantable 3d-printed medical devices. Clin Transl Sci 8(5):594–600CrossRef Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Green GE, Hollister SJ, Weatherwax KJ (2015) Regulatory considerations in the design and manufacturing of implantable 3d-printed medical devices. Clin Transl Sci 8(5):594–600CrossRef
77.
Zurück zum Zitat Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L (2015) Additively manufactured medical products—the FDA perspective. 3D Print Med 2(1):1CrossRef Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L (2015) Additively manufactured medical products—the FDA perspective. 3D Print Med 2(1):1CrossRef
78.
Zurück zum Zitat Additive manufacturing in medical devices: insights from J&J and the FDA, Generis.html Additive manufacturing in medical devices: insights from J&J and the FDA, Generis.html
79.
Zurück zum Zitat Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world? technologies, potential, and implications of additive manufacturing strategic for resight initiative, October 2011 Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world? technologies, potential, and implications of additive manufacturing strategic for resight initiative, October 2011
80.
Zurück zum Zitat Ursan ID, Chiu L, Pierce A (2013) Three-dimensional drug printing: a structured review. J Am Pharmaceut Assoc 53(2):136–144CrossRef Ursan ID, Chiu L, Pierce A (2013) Three-dimensional drug printing: a structured review. J Am Pharmaceut Assoc 53(2):136–144CrossRef
81.
Zurück zum Zitat Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef
82.
Zurück zum Zitat Di Bella C, Duchi S, O’Connell CD, Blanchard R, Augustine C, Yue Z, Thompson F, Richards C, Beirne S, Onofrillo C (2017) In-situ handheld 3D Bioprinting for cartilage regeneration. J Tissue Eng Regen Med. Ahead of print (in press) Di Bella C, Duchi S, O’Connell CD, Blanchard R, Augustine C, Yue Z, Thompson F, Richards C, Beirne S, Onofrillo C (2017) In-situ handheld 3D Bioprinting for cartilage regeneration. J Tissue Eng Regen Med. Ahead of print (in press)
83.
Zurück zum Zitat Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639CrossRef Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639CrossRef
Metadaten
Titel
Additive Manufacturing: Current Concepts, Methods, and Applications in Oral Health Care
verfasst von
Jagat Bhushan
Vishakha Grover
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13951-3_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.