Skip to main content
Erschienen in: Progress in Additive Manufacturing 2/2021

16.03.2021 | Review Article

Additive manufacturing embraces big data

verfasst von: Kaiming Bi, Dong Lin, Yiliang Liao, Chih-Hang Wu, Pedram Parandoush

Erschienen in: Progress in Additive Manufacturing | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) is a relatively novel method to fabricate 3D objects by adding layer-upon-layer materials. As one of the most anticipated techniques in recent years, AM already made advances in design, production, and supply chain process of the manufacturing industry. AM is a digital manufacturing technology in which a massive amount of data is generated during the process. Accordingly, obtaining useful information from these data to improve current AM technology becomes a challenge. Meanwhile, Big Data research provides an ideal solution for dealing with the massive data obtained from AM processes. Besides the contributions in the AM research and production, Big Data analysis methods can also be used to help designers and engineers by collecting valuable information from clients and customers. From a business perspective, the manufacturing sector will benefit from the established Big Data sharing platform to promote and popularize new products. On the other hand, customers will obtain desired commodities with the help of a new-type 3D printing service system. The goal of this article is to summarize the contributions from the existing literature in the AM and Big Data field and prospect how Big Data methods can offer a better future for AM technology. It also introduces recent developments in AM technology combined with the internet of things (IoT), cloud, and cybersecurity. Future directions in AM and Big Data, which include AM data unification, completed AM data-sharing platform, and smart AM production process is pointed out as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kodama H (1981) A scheme for three-dimensional display by automatic fabrication of three-dimensional model. J IEICE 64:1981–1984 Kodama H (1981) A scheme for three-dimensional display by automatic fabrication of three-dimensional model. J IEICE 64:1981–1984
2.
Zurück zum Zitat Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. Google Patents Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. Google Patents
3.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
4.
Zurück zum Zitat Ahn S-H et al (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257CrossRef Ahn S-H et al (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257CrossRef
5.
Zurück zum Zitat Mueller B, Kochan D (1999) Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput Ind 39(1):47–53CrossRef Mueller B, Kochan D (1999) Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput Ind 39(1):47–53CrossRef
6.
Zurück zum Zitat Esmaeilian B, Behdad S, Wang B (2016) The evolution and future of manufacturing: a review. J Manuf Syst 39:79–100CrossRef Esmaeilian B, Behdad S, Wang B (2016) The evolution and future of manufacturing: a review. J Manuf Syst 39:79–100CrossRef
7.
Zurück zum Zitat Coopers PW (2014) 3D printing and the new shape of industrial manufacturing. Pricewaterhouse Coopers LLP, London Coopers PW (2014) 3D printing and the new shape of industrial manufacturing. Pricewaterhouse Coopers LLP, London
8.
Zurück zum Zitat Carneiro OS, Silva A, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776CrossRef Carneiro OS, Silva A, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776CrossRef
9.
Zurück zum Zitat Ning F et al (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef Ning F et al (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef
10.
Zurück zum Zitat Sutton AT et al (2017) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototyp 12(1):3–29MathSciNetCrossRef Sutton AT et al (2017) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototyp 12(1):3–29MathSciNetCrossRef
11.
Zurück zum Zitat King WE et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214(12):2915–2925CrossRef King WE et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214(12):2915–2925CrossRef
12.
Zurück zum Zitat Paul BK, Voorakarnam V (2001) Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing. J Manuf Process 3(2):94CrossRef Paul BK, Voorakarnam V (2001) Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing. J Manuf Process 3(2):94CrossRef
13.
Zurück zum Zitat Steinmann B (2006) Stereolithographic resins with high temperature and high impact resistance. Google Patents Steinmann B (2006) Stereolithographic resins with high temperature and high impact resistance. Google Patents
14.
Zurück zum Zitat Conner BP et al (2014) Making sense of 3-D printing: creating a map of additive manufacturing products and services. Addit Manuf 1:64–76 Conner BP et al (2014) Making sense of 3-D printing: creating a map of additive manufacturing products and services. Addit Manuf 1:64–76
15.
Zurück zum Zitat Hashem IAT et al (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115CrossRef Hashem IAT et al (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115CrossRef
16.
Zurück zum Zitat Rüßmann M et al (2015) Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consult Group 9(1):54–89 Rüßmann M et al (2015) Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consult Group 9(1):54–89
17.
Zurück zum Zitat Wang L, Alexander CA (2016) Additive manufacturing and big data. Int J Math Eng Manag Sci 1(3):107–121 Wang L, Alexander CA (2016) Additive manufacturing and big data. Int J Math Eng Manag Sci 1(3):107–121
18.
Zurück zum Zitat Guha S, Kumar S (2018) Emergence of big data research in operations management, information systems, and healthcare: past contributions and future roadmap. Prod Oper Manag 27(9):1724–1735 Guha S, Kumar S (2018) Emergence of big data research in operations management, information systems, and healthcare: past contributions and future roadmap. Prod Oper Manag 27(9):1724–1735
19.
Zurück zum Zitat Rao PK et al (2016) Assessment of dimensional integrity and spatial defect localization in additive manufacturing using spectral graph theory. J Manuf Sci Eng Trans Asme 138(5) Rao PK et al (2016) Assessment of dimensional integrity and spatial defect localization in additive manufacturing using spectral graph theory. J Manuf Sci Eng Trans Asme 138(5)
20.
Zurück zum Zitat Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, Hoboken Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, Hoboken
21.
Zurück zum Zitat Gao W et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef Gao W et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRef
22.
Zurück zum Zitat Ollison T, Berisso K (2010) Three-dimensional printing build variables that impact cylindricity. J Ind Technol 26(1) Ollison T, Berisso K (2010) Three-dimensional printing build variables that impact cylindricity. J Ind Technol 26(1)
23.
Zurück zum Zitat Huang SH et al (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203CrossRef Huang SH et al (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203CrossRef
24.
Zurück zum Zitat Huang Y et al (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014001CrossRef Huang Y et al (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014001CrossRef
25.
Zurück zum Zitat Bastani K, Rao PK, Kong Z (2016) An online sparse estimation-based classification approach for real-time monitoring in advanced manufacturing processes from heterogeneous sensor data. IIE Trans 48(7):579–598CrossRef Bastani K, Rao PK, Kong Z (2016) An online sparse estimation-based classification approach for real-time monitoring in advanced manufacturing processes from heterogeneous sensor data. IIE Trans 48(7):579–598CrossRef
26.
Zurück zum Zitat Tootooni MS et al (2017) Classifying the dimensional variation in additive manufactured parts from laser-scanned three-dimensional point cloud data using machine learning approaches. J Manuf Sci Eng 139(9):091005CrossRef Tootooni MS et al (2017) Classifying the dimensional variation in additive manufactured parts from laser-scanned three-dimensional point cloud data using machine learning approaches. J Manuf Sci Eng 139(9):091005CrossRef
27.
Zurück zum Zitat Scime L, Beuth J (2018) Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manuf 19:114–126 Scime L, Beuth J (2018) Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manuf 19:114–126
28.
Zurück zum Zitat Craeghs T et al (2010) Feedback control of layerwise laser melting using optical sensors. Phys Proc 5:505–514CrossRef Craeghs T et al (2010) Feedback control of layerwise laser melting using optical sensors. Phys Proc 5:505–514CrossRef
29.
Zurück zum Zitat Craeghs T et al (2012) Detection of process failures in layerwise laser melting with optical process monitoring. Phys Proc 39:753–759CrossRef Craeghs T et al (2012) Detection of process failures in layerwise laser melting with optical process monitoring. Phys Proc 39:753–759CrossRef
30.
Zurück zum Zitat Wu M et al (2016) Detecting malicious defects in 3d printing process using machine learning and image classification. In: ASME 2016 international mechanical engineering congress and exposition. American Society of Mechanical Engineers Wu M et al (2016) Detecting malicious defects in 3d printing process using machine learning and image classification. In: ASME 2016 international mechanical engineering congress and exposition. American Society of Mechanical Engineers
31.
Zurück zum Zitat Gobert C et al (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf 21:517–528 Gobert C et al (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf 21:517–528
32.
Zurück zum Zitat Rodriguez E et al (2012) Integration of a thermal imaging feedback control system in electron beam melting. In: Proceedings of the solid freeform fabrication symposium Rodriguez E et al (2012) Integration of a thermal imaging feedback control system in electron beam melting. In: Proceedings of the solid freeform fabrication symposium
33.
Zurück zum Zitat Wegner A, Witt G (2011) Process monitoring in laser sintering using thermal imaging. In: SFF symposium, Austin Wegner A, Witt G (2011) Process monitoring in laser sintering using thermal imaging. In: SFF symposium, Austin
34.
Zurück zum Zitat Krauss H, Eschey C, Zaeh M (2012) Thermography for monitoring the selective laser melting process. In: Proceedings of the solid freeform fabrication symposium Krauss H, Eschey C, Zaeh M (2012) Thermography for monitoring the selective laser melting process. In: Proceedings of the solid freeform fabrication symposium
35.
Zurück zum Zitat Price S, Cooper K, Chou K (2012) Evaluations of temperature measurements by near-infrared thermography in powder-based electron-beam additive manufacturing. In: Proceedings of the solid freeform fabrication symposium. University of Texas, Austin Price S, Cooper K, Chou K (2012) Evaluations of temperature measurements by near-infrared thermography in powder-based electron-beam additive manufacturing. In: Proceedings of the solid freeform fabrication symposium. University of Texas, Austin
36.
Zurück zum Zitat Yao B et al (2018) Multifractal analysis of image profiles for the characterization and detection of defects in additive manufacturing. J Manuf Sci Eng 140(3):031014CrossRef Yao B et al (2018) Multifractal analysis of image profiles for the characterization and detection of defects in additive manufacturing. J Manuf Sci Eng 140(3):031014CrossRef
37.
Zurück zum Zitat Gobert C et al (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf 21:517–528 Gobert C et al (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf 21:517–528
38.
Zurück zum Zitat Gobert C (2017) Online discontinuity detection in metallic powder bed fusion additive manufacturing processes using visual inspection sensors and supervised machine learning. Pennsylvania State University Gobert C (2017) Online discontinuity detection in metallic powder bed fusion additive manufacturing processes using visual inspection sensors and supervised machine learning. Pennsylvania State University
39.
Zurück zum Zitat Mazumder J (2015) Design for metallic additive manufacturing machine with capability for “Certify as You Build.” Proc CIRP 36:187–192CrossRef Mazumder J (2015) Design for metallic additive manufacturing machine with capability for “Certify as You Build.” Proc CIRP 36:187–192CrossRef
40.
Zurück zum Zitat Khanzadeh M et al (2018) Quantifying geometric accuracy with unsupervised machine learning: using self-organizing map on fused filament fabrication additive manufacturing parts. J Manuf Sci Eng 140(3):031011CrossRef Khanzadeh M et al (2018) Quantifying geometric accuracy with unsupervised machine learning: using self-organizing map on fused filament fabrication additive manufacturing parts. J Manuf Sci Eng 140(3):031011CrossRef
41.
Zurück zum Zitat Albakri MI et al (2017) Impedance-based non-destructive evaluation of additively manufactured parts. Rapid Prototyp J 23(3):589–601CrossRef Albakri MI et al (2017) Impedance-based non-destructive evaluation of additively manufactured parts. Rapid Prototyp J 23(3):589–601CrossRef
42.
Zurück zum Zitat Yan W et al (2018) Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing. Comput Mech 61(5):521–541MATHCrossRef Yan W et al (2018) Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing. Comput Mech 61(5):521–541MATHCrossRef
43.
Zurück zum Zitat Malekipour E, El-Mounayri H (2018) Defects, process parameters and signatures for online monitoring and control in powder-based additive manufacturing. Mechanics of additive and advanced manufacturing, vol 9. Springer, pp 83–90 Malekipour E, El-Mounayri H (2018) Defects, process parameters and signatures for online monitoring and control in powder-based additive manufacturing. Mechanics of additive and advanced manufacturing, vol 9. Springer, pp 83–90
44.
Zurück zum Zitat Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J 17(3):195–202CrossRef Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J 17(3):195–202CrossRef
45.
Zurück zum Zitat Craeghs T et al (2011) Online quality control of selective laser melting. In: Proceedings of the solid freeform fabrication symposium, Austin Craeghs T et al (2011) Online quality control of selective laser melting. In: Proceedings of the solid freeform fabrication symposium, Austin
46.
Zurück zum Zitat Berumen S et al (2010) Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys Proc 5:617–622CrossRef Berumen S et al (2010) Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys Proc 5:617–622CrossRef
47.
Zurück zum Zitat Kleszczynski S et al (2012) Error detection in laser beam melting systems by high resolution imaging. In: Proceedings of the twenty third annual international solid freeform fabrication symposium Kleszczynski S et al (2012) Error detection in laser beam melting systems by high resolution imaging. In: Proceedings of the twenty third annual international solid freeform fabrication symposium
48.
Zurück zum Zitat Shemelya C et al (2015) Multi-functional 3D printed and embedded sensors for satellite qualification structures. In: 2015 IEEE sensors. IEEE Shemelya C et al (2015) Multi-functional 3D printed and embedded sensors for satellite qualification structures. In: 2015 IEEE sensors. IEEE
49.
Zurück zum Zitat Akmal JS et al (2018) Implementation of industrial additive manufacturing: intelligent implants and drug delivery systems. J Funct Biomater 9(3):41CrossRef Akmal JS et al (2018) Implementation of industrial additive manufacturing: intelligent implants and drug delivery systems. J Funct Biomater 9(3):41CrossRef
50.
Zurück zum Zitat Wasserfall F (2015) Embedding of SMD populated circuits into FDM printed objects. In: Solid freeform fabrication symposium Wasserfall F (2015) Embedding of SMD populated circuits into FDM printed objects. In: Solid freeform fabrication symposium
51.
Zurück zum Zitat Wu H, Wang Y, Yu Z (2016) In situ monitoring of FDM machine condition via acoustic emission. Int J Adv Manuf Technol 84(5–8):1483–1495 Wu H, Wang Y, Yu Z (2016) In situ monitoring of FDM machine condition via acoustic emission. Int J Adv Manuf Technol 84(5–8):1483–1495
52.
Zurück zum Zitat Davim JP, Oliveira C, Cardoso A (2008) Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA). Mater Des 29(2):554–557CrossRef Davim JP, Oliveira C, Cardoso A (2008) Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA). Mater Des 29(2):554–557CrossRef
53.
Zurück zum Zitat Nenadl O et al (2014) The prediction of coating geometry from main processing parameters in laser cladding. Phys Proc 56:220–227CrossRef Nenadl O et al (2014) The prediction of coating geometry from main processing parameters in laser cladding. Phys Proc 56:220–227CrossRef
54.
Zurück zum Zitat Alimardani M, Toyserkani E (2008) Prediction of laser solid freeform fabrication using neuro-fuzzy method. Appl Soft Comput 8(1):316–323CrossRef Alimardani M, Toyserkani E (2008) Prediction of laser solid freeform fabrication using neuro-fuzzy method. Appl Soft Comput 8(1):316–323CrossRef
55.
Zurück zum Zitat Xiong J et al (2014) Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J Intell Manuf 25(1):157–163CrossRef Xiong J et al (2014) Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J Intell Manuf 25(1):157–163CrossRef
56.
Zurück zum Zitat Lanzotti A et al (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):604–617CrossRef Lanzotti A et al (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):604–617CrossRef
57.
Zurück zum Zitat Vijayaraghavan V et al (2015) Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. Int J Adv Manuf Technol 78(5–8):781–793CrossRef Vijayaraghavan V et al (2015) Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. Int J Adv Manuf Technol 78(5–8):781–793CrossRef
58.
Zurück zum Zitat Zhu Z et al (2018) Machine learning in tolerancing for additive manufacturing. CIRP Ann 67(1):157–160 Zhu Z et al (2018) Machine learning in tolerancing for additive manufacturing. CIRP Ann 67(1):157–160
59.
Zurück zum Zitat Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60(5–8):601–610CrossRef Delgado J, Ciurana J, Rodríguez CA (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60(5–8):601–610CrossRef
60.
Zurück zum Zitat Verma A, Tyagi S, Yang K (2015) Modeling and optimization of direct metal laser sintering process. Int J Adv Manuf Technol 77(5–8):847–860CrossRef Verma A, Tyagi S, Yang K (2015) Modeling and optimization of direct metal laser sintering process. Int J Adv Manuf Technol 77(5–8):847–860CrossRef
61.
Zurück zum Zitat Paul R, Anand S (2012) Process energy analysis and optimization in selective laser sintering. J Manuf Syst 31(4):429–437CrossRef Paul R, Anand S (2012) Process energy analysis and optimization in selective laser sintering. J Manuf Syst 31(4):429–437CrossRef
62.
Zurück zum Zitat Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136(6):060801CrossRef Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136(6):060801CrossRef
63.
Zurück zum Zitat Yasa E et al (2009) Investigation on occurrence of elevated edges in selective laser melting. In: International solid freeform fabrication symposium, Austin Yasa E et al (2009) Investigation on occurrence of elevated edges in selective laser melting. In: International solid freeform fabrication symposium, Austin
64.
Zurück zum Zitat Gong H et al (2014) Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. In: Solid freeform fabrication symposium Gong H et al (2014) Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. In: Solid freeform fabrication symposium
65.
Zurück zum Zitat Tapia G, Elwany A, Sang H (2016) Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf 12:282–290 Tapia G, Elwany A, Sang H (2016) Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf 12:282–290
66.
Zurück zum Zitat Meier H, Haberland C (2008) Experimental studies on selective laser melting of metallic parts. Materialwiss Werkstofftech 39(9):665–670CrossRef Meier H, Haberland C (2008) Experimental studies on selective laser melting of metallic parts. Materialwiss Werkstofftech 39(9):665–670CrossRef
67.
Zurück zum Zitat Garg A, Lam JSL, Savalani M (2015) A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. Int J Adv Manuf Technol 80(1–4):555–565CrossRef Garg A, Lam JSL, Savalani M (2015) A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. Int J Adv Manuf Technol 80(1–4):555–565CrossRef
68.
Zurück zum Zitat Zhang X et al (2016) Data‐driven bending elasticity design by shell thickness. In: Computer graphics forum. Wiley Online Library Zhang X et al (2016) Data‐driven bending elasticity design by shell thickness. In: Computer graphics forum. Wiley Online Library
69.
Zurück zum Zitat Desai DR, Magliocca GN (2013) Patents, meet Napster: 3D printing and the digitization of things. Geo LJ 102:1691 Desai DR, Magliocca GN (2013) Patents, meet Napster: 3D printing and the digitization of things. Geo LJ 102:1691
70.
Zurück zum Zitat Zhang X et al (2015) Perceptual models of preference in 3D printing direction. Acm Trans Graph 34(6):1–12 Zhang X et al (2015) Perceptual models of preference in 3D printing direction. Acm Trans Graph 34(6):1–12
71.
Zurück zum Zitat Hu KL, Jin S, Wang CCL (2015) Support slimming for single material based additive manufacturing. Comput Aided Des 65:1–10CrossRef Hu KL, Jin S, Wang CCL (2015) Support slimming for single material based additive manufacturing. Comput Aided Des 65:1–10CrossRef
72.
Zurück zum Zitat Hu K, Zhang X, Wang CC (2015) Direct computation of minimal rotation for support slimming. In: 2015 IEEE international conference on automation science and engineering (CASE). IEEE Hu K, Zhang X, Wang CC (2015) Direct computation of minimal rotation for support slimming. In: 2015 IEEE international conference on automation science and engineering (CASE). IEEE
73.
Zurück zum Zitat Thompson MK et al (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760CrossRef Thompson MK et al (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760CrossRef
74.
Zurück zum Zitat Ponche R et al (2014) A novel methodology of design for additive manufacturing applied to additive laser manufacturing process. Robot Comput Integr Manuf 30(4):389–398CrossRef Ponche R et al (2014) A novel methodology of design for additive manufacturing applied to additive laser manufacturing process. Robot Comput Integr Manuf 30(4):389–398CrossRef
75.
Zurück zum Zitat Langelaar M (2017) An additive manufacturing filter for topology optimization of print-ready designs. Struct Multidiscip Optim 55(3):871–883MathSciNetCrossRef Langelaar M (2017) An additive manufacturing filter for topology optimization of print-ready designs. Struct Multidiscip Optim 55(3):871–883MathSciNetCrossRef
76.
Zurück zum Zitat Langelaar M (2016) Topology optimization of 3D self-supporting structures for additive manufacturing. Addit Manuf 12:60–70 Langelaar M (2016) Topology optimization of 3D self-supporting structures for additive manufacturing. Addit Manuf 12:60–70
77.
Zurück zum Zitat Gaynor AT, Guest JK (2016) Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscip Optim 54(5):1157–1172MathSciNetCrossRef Gaynor AT, Guest JK (2016) Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscip Optim 54(5):1157–1172MathSciNetCrossRef
78.
Zurück zum Zitat Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. Comput Aided Des 81:1–13CrossRef Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. Comput Aided Des 81:1–13CrossRef
79.
Zurück zum Zitat Rezaie R et al (2013) Topology optimization for fused deposition modeling process. Proc CIRP 6:521–526CrossRef Rezaie R et al (2013) Topology optimization for fused deposition modeling process. Proc CIRP 6:521–526CrossRef
80.
Zurück zum Zitat Sing SL et al (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34(3):369–385CrossRef Sing SL et al (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34(3):369–385CrossRef
81.
Zurück zum Zitat Gu GX et al (2018) Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horizons 5(5):939–945 Gu GX et al (2018) Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horizons 5(5):939–945
82.
Zurück zum Zitat Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587CrossRef Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587CrossRef
83.
Zurück zum Zitat Boyle BM et al (2017) Structural color for additive manufacturing: 3D-printed photonic crystals from block copolymers. ACS Nano 11(3):3052–3058CrossRef Boyle BM et al (2017) Structural color for additive manufacturing: 3D-printed photonic crystals from block copolymers. ACS Nano 11(3):3052–3058CrossRef
84.
Zurück zum Zitat Mohammed M et al (2016) Applications of 3D topography scanning and multi-material additive manufacturing for facial prosthesis development and production. In: Proceedings of the 27th annual international solid freeform fabrication symposium Mohammed M et al (2016) Applications of 3D topography scanning and multi-material additive manufacturing for facial prosthesis development and production. In: Proceedings of the 27th annual international solid freeform fabrication symposium
85.
Zurück zum Zitat Chung M, Kim J (2016) The internet information and technology research directions based on the fourth industrial revolution. KSII Trans Internet Inf Syst 10(3):1311-1320 Chung M, Kim J (2016) The internet information and technology research directions based on the fourth industrial revolution. KSII Trans Internet Inf Syst 10(3):1311-1320
86.
Zurück zum Zitat Gubbi J et al (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst Int J Esci 29(7):1645–1660CrossRef Gubbi J et al (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst Int J Esci 29(7):1645–1660CrossRef
87.
Zurück zum Zitat Ashton K (2009) That ‘internet of things’ thing. RFID journal 22(7):97–114 Ashton K (2009) That ‘internet of things’ thing. RFID journal 22(7):97–114
88.
Zurück zum Zitat Schwab K (2017) The fourth industrial revolution. Crown Business, New York, p 192 Schwab K (2017) The fourth industrial revolution. Crown Business, New York, p 192
89.
Zurück zum Zitat Lee C, Leem CS, Hwang I (2011) PDM and ERP integration methodology using digital manufacturing to support global manufacturing. Int J Adv Manuf Technol 53(1–4):399–409CrossRef Lee C, Leem CS, Hwang I (2011) PDM and ERP integration methodology using digital manufacturing to support global manufacturing. Int J Adv Manuf Technol 53(1–4):399–409CrossRef
90.
Zurück zum Zitat Caputo A, Marzi G, Pellegrini MM (2016) The internet of things in manufacturing innovation processes: development and application of a conceptual framework. Bus Process Manag J 22(2):383–402CrossRef Caputo A, Marzi G, Pellegrini MM (2016) The internet of things in manufacturing innovation processes: development and application of a conceptual framework. Bus Process Manag J 22(2):383–402CrossRef
91.
Zurück zum Zitat Qin J, Liu Y, Grosvenor R (2017) A framework of energy consumption modelling for additive manufacturing using internet of things. Proc CIRP 63:307–312CrossRef Qin J, Liu Y, Grosvenor R (2017) A framework of energy consumption modelling for additive manufacturing using internet of things. Proc CIRP 63:307–312CrossRef
92.
Zurück zum Zitat Mourtzis D, Vlachou E, Milas N (2016) Industrial big data as a result of IoT adoption in manufacturing. Proc CIRP 55:290–295CrossRef Mourtzis D, Vlachou E, Milas N (2016) Industrial big data as a result of IoT adoption in manufacturing. Proc CIRP 55:290–295CrossRef
93.
Zurück zum Zitat Lu Y, Cecil J (2016) An internet of things (IoT)-based collaborative framework for advanced manufacturing. Int J Adv Manuf Technol 84(5–8):1141–1152 Lu Y, Cecil J (2016) An internet of things (IoT)-based collaborative framework for advanced manufacturing. Int J Adv Manuf Technol 84(5–8):1141–1152
94.
Zurück zum Zitat Kaur S (2012) How is “Internet of the 3D Printed Products” going to affect our lives? Pushing frontiers with the first lady of emerging technologies. IETE Tech Rev 29(5):360–364CrossRef Kaur S (2012) How is “Internet of the 3D Printed Products” going to affect our lives? Pushing frontiers with the first lady of emerging technologies. IETE Tech Rev 29(5):360–364CrossRef
95.
Zurück zum Zitat Rogers H, Baricz N, Pawar KS (2016) 3D printing services: classification, supply chain implications and research agenda. Int J Phys Distrib Logist Manag 46(10):886–907CrossRef Rogers H, Baricz N, Pawar KS (2016) 3D printing services: classification, supply chain implications and research agenda. Int J Phys Distrib Logist Manag 46(10):886–907CrossRef
96.
Zurück zum Zitat Dilberoglu UM et al (2017) The role of additive manufacturing in the era of industry 4.0. Procedia Manufacturing 11:545–554CrossRef Dilberoglu UM et al (2017) The role of additive manufacturing in the era of industry 4.0. Procedia Manufacturing 11:545–554CrossRef
97.
Zurück zum Zitat Mell P, Grance T (2011) The NIST definition of cloud computing Mell P, Grance T (2011) The NIST definition of cloud computing
98.
Zurück zum Zitat Xu X (2012) From cloud computing to cloud manufacturing. Robot Comput Integr Manuf 28(1):75–86CrossRef Xu X (2012) From cloud computing to cloud manufacturing. Robot Comput Integr Manuf 28(1):75–86CrossRef
99.
Zurück zum Zitat Wu D et al (2013) Cloud manufacturing: Strategic vision and state-of-the-art. J Manuf Syst 32(4):564–579CrossRef Wu D et al (2013) Cloud manufacturing: Strategic vision and state-of-the-art. J Manuf Syst 32(4):564–579CrossRef
100.
Zurück zum Zitat Tao F et al (2011) Cloud manufacturing: a computing and service-oriented manufacturing model. Proc Inst Mech Eng Part B J Eng Manuf 225(10):1969–1976CrossRef Tao F et al (2011) Cloud manufacturing: a computing and service-oriented manufacturing model. Proc Inst Mech Eng Part B J Eng Manuf 225(10):1969–1976CrossRef
101.
Zurück zum Zitat Liu XW et al (2014) Research on profit mechanism of 3D Printing Cloud Platform based on customized products. Appl Mech Mater 703: 318–322 Liu XW et al (2014) Research on profit mechanism of 3D Printing Cloud Platform based on customized products. Appl Mech Mater 703: 318–322
102.
Zurück zum Zitat Mai JG et al (2016) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):71–83CrossRef Mai JG et al (2016) Customized production based on distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):71–83CrossRef
103.
Zurück zum Zitat Guo L, Qiu J (2018) Combination of cloud manufacturing and 3D printing: research progress and prospect. Int J Adv Manuf Technol 96(5):1929–1942 Guo L, Qiu J (2018) Combination of cloud manufacturing and 3D printing: research progress and prospect. Int J Adv Manuf Technol 96(5):1929–1942
104.
Zurück zum Zitat Baumann FW, Roller D (2017) Survey on additive manufacturing, cloud 3D printing and services. arXiv: 1708.04875 Baumann FW, Roller D (2017) Survey on additive manufacturing, cloud 3D printing and services. arXiv: 1708.​04875
105.
Zurück zum Zitat Lehmhus D et al (2015) Cloud-based automated design and additive manufacturing: a usage data-enabled paradigm shift. Sensors 15(12):32079–32122CrossRef Lehmhus D et al (2015) Cloud-based automated design and additive manufacturing: a usage data-enabled paradigm shift. Sensors 15(12):32079–32122CrossRef
106.
Zurück zum Zitat von Solms R, van Niekerk J (2013) From information security to cyber security. Comput Secur 38:97–102CrossRef von Solms R, van Niekerk J (2013) From information security to cyber security. Comput Secur 38:97–102CrossRef
107.
Zurück zum Zitat Chhetri SR, Canedo A, Faruque MAA (2018) Confidentiality breach through acoustic side-channel in cyber-physical additive manufacturing systems. ACM Trans Cyber-Phys Syst 2(1):3CrossRef Chhetri SR, Canedo A, Faruque MAA (2018) Confidentiality breach through acoustic side-channel in cyber-physical additive manufacturing systems. ACM Trans Cyber-Phys Syst 2(1):3CrossRef
108.
Zurück zum Zitat Sturm L et al (2014) Cyber-physical vunerabilities in additive manufacturing systems. Context 7(8) Sturm L et al (2014) Cyber-physical vunerabilities in additive manufacturing systems. Context 7(8)
109.
Zurück zum Zitat Mustaca S (2014) Are your IT professionals prepared for the challenges to come? Comput Fraud Secur 2014(3):18–20CrossRef Mustaca S (2014) Are your IT professionals prepared for the challenges to come? Comput Fraud Secur 2014(3):18–20CrossRef
110.
Zurück zum Zitat Al Faruque MA et al (2016) Forensics of thermal side-channel in additive manufacturing systems. In: CECS Technical Report# 16-01. University of California Irvine Al Faruque MA et al (2016) Forensics of thermal side-channel in additive manufacturing systems. In: CECS Technical Report# 16-01. University of California Irvine
111.
Zurück zum Zitat Faruque A et al (2016) Acoustic side-channel attacks on additive manufacturing systems. In: Proceedings of the 7th international conference on cyber-physical systems. IEEE Press Faruque A et al (2016) Acoustic side-channel attacks on additive manufacturing systems. In: Proceedings of the 7th international conference on cyber-physical systems. IEEE Press
112.
Zurück zum Zitat Chhetri SR, Canedo A, Al Faruque MA (2016) Kcad: kinetic cyber-attack detection method for cyber-physical additive manufacturing systems. In: 2016 IEEE/ACM international conference on computer-aided design (ICCAD). IEEE. Chhetri SR, Canedo A, Al Faruque MA (2016) Kcad: kinetic cyber-attack detection method for cyber-physical additive manufacturing systems. In: 2016 IEEE/ACM international conference on computer-aided design (ICCAD). IEEE.
113.
Zurück zum Zitat Song C et al (2016) My smartphone knows what you print: Exploring smartphone-based side-channel attacks against 3d printers. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. ACM Song C et al (2016) My smartphone knows what you print: Exploring smartphone-based side-channel attacks against 3d printers. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. ACM
114.
Zurück zum Zitat Bandyopadhyay A, Bose S (2015) Additive manufacturing. CRC Press, Boca RatonCrossRef Bandyopadhyay A, Bose S (2015) Additive manufacturing. CRC Press, Boca RatonCrossRef
115.
Zurück zum Zitat Tanenbaum JG et al (2013) Democratizing technology: pleasure, utility and expressiveness in DIY and maker practice. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM Tanenbaum JG et al (2013) Democratizing technology: pleasure, utility and expressiveness in DIY and maker practice. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM
116.
Zurück zum Zitat Despeisse M et al (2017) Unlocking value for a circular economy through 3D printing: a research agenda. Technol Forecast Soc Chang 115:75–84CrossRef Despeisse M et al (2017) Unlocking value for a circular economy through 3D printing: a research agenda. Technol Forecast Soc Chang 115:75–84CrossRef
117.
Zurück zum Zitat Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng Part G J Aerosp Eng 229(11):2132–2147CrossRef Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng Part G J Aerosp Eng 229(11):2132–2147CrossRef
118.
Zurück zum Zitat Khajavi SH, Partanen J, Holmström J (2014) Additive manufacturing in the spare parts supply chain. Comput Ind 65(1):50–63CrossRef Khajavi SH, Partanen J, Holmström J (2014) Additive manufacturing in the spare parts supply chain. Comput Ind 65(1):50–63CrossRef
119.
Zurück zum Zitat Silva JV, Rezende RA (2013) Additive Manufacturing and its future impact in logistics. IFAC Proceedings Volumes 46(24):277–282CrossRef Silva JV, Rezende RA (2013) Additive Manufacturing and its future impact in logistics. IFAC Proceedings Volumes 46(24):277–282CrossRef
120.
Zurück zum Zitat Gausemeier J et al (2011) Thinking ahead the future of additive manufacturing. Future Appl Gausemeier J et al (2011) Thinking ahead the future of additive manufacturing. Future Appl
121.
Zurück zum Zitat Assunção MD et al (2015) Big Data computing and clouds: trends and future directions. J Parallel Distrib Comput 79:3–15MathSciNetCrossRef Assunção MD et al (2015) Big Data computing and clouds: trends and future directions. J Parallel Distrib Comput 79:3–15MathSciNetCrossRef
122.
Zurück zum Zitat Fan W, Bifet A (2013) Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newsl 14(2):1–5CrossRef Fan W, Bifet A (2013) Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newsl 14(2):1–5CrossRef
123.
Zurück zum Zitat Agrawal D, Das S, El Abbadi A (2011) Big data and cloud computing: current state and future opportunities. In: Proceedings of the 14th international conference on extending database technology. ACM Agrawal D, Das S, El Abbadi A (2011) Big data and cloud computing: current state and future opportunities. In: Proceedings of the 14th international conference on extending database technology. ACM
124.
Zurück zum Zitat Chong L, Ramakrishna S, Singh S (2018) A review of digital manufacturing-based hybrid additive manufacturing processes. Int J Adv Manuf Technol 95(5–8):2281–2300CrossRef Chong L, Ramakrishna S, Singh S (2018) A review of digital manufacturing-based hybrid additive manufacturing processes. Int J Adv Manuf Technol 95(5–8):2281–2300CrossRef
125.
Zurück zum Zitat Weiss F, Roth D, Binz H (2018) Content and functions of an internet-based platform for supporting development of additively manufactured parts. In: DS92: proceedings of the design 2018 15th international design conference Weiss F, Roth D, Binz H (2018) Content and functions of an internet-based platform for supporting development of additively manufactured parts. In: DS92: proceedings of the design 2018 15th international design conference
126.
Zurück zum Zitat Rudolph J-P, Emmelmann C (2017) A cloud-based platform for automated order processing in additive manufacturing. Proc CIRP 63:412–417CrossRef Rudolph J-P, Emmelmann C (2017) A cloud-based platform for automated order processing in additive manufacturing. Proc CIRP 63:412–417CrossRef
127.
Zurück zum Zitat Lee J et al (2013) Recent advances and trends in predictive manufacturing systems in big data environment. Manuf Lett 1(1):38–41CrossRef Lee J et al (2013) Recent advances and trends in predictive manufacturing systems in big data environment. Manuf Lett 1(1):38–41CrossRef
128.
Zurück zum Zitat Babiceanu RF, Seker R (2015) Manufacturing operations, internet of things, and big data: towards predictive manufacturing systems. Service orientation in holonic and multi-agent manufacturing. Springer, pp 157–164CrossRef Babiceanu RF, Seker R (2015) Manufacturing operations, internet of things, and big data: towards predictive manufacturing systems. Service orientation in holonic and multi-agent manufacturing. Springer, pp 157–164CrossRef
129.
Zurück zum Zitat Khan AR et al (2021) Predictive manufacturing: classification of categorical data. J Qual Technol Khan AR et al (2021) Predictive manufacturing: classification of categorical data. J Qual Technol
130.
Zurück zum Zitat Chekurov S et al (2018) The perceived value of additively manufactured digital spare parts in industry: An empirical investigation. Int J Prod Econ 205:87–97CrossRef Chekurov S et al (2018) The perceived value of additively manufactured digital spare parts in industry: An empirical investigation. Int J Prod Econ 205:87–97CrossRef
131.
Zurück zum Zitat Holmström J et al (2010) Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment. J Manuf Technol Manag Holmström J et al (2010) Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment. J Manuf Technol Manag
132.
Zurück zum Zitat Kretzschmar N et al (2018) Evaluating the readiness level of additively manufactured digital spare parts: an industrial perspective. Appl Sci 8(10):1837CrossRef Kretzschmar N et al (2018) Evaluating the readiness level of additively manufactured digital spare parts: an industrial perspective. Appl Sci 8(10):1837CrossRef
133.
Zurück zum Zitat Davis J et al (2012) Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 47:145–156CrossRef Davis J et al (2012) Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 47:145–156CrossRef
134.
Zurück zum Zitat Kang HS et al (2016) Smart manufacturing: past research, present findings, and future directions. Int J Precis Eng Manuf Green Technol 3(1):111–128CrossRef Kang HS et al (2016) Smart manufacturing: past research, present findings, and future directions. Int J Precis Eng Manuf Green Technol 3(1):111–128CrossRef
135.
Zurück zum Zitat Lu Y, Morris KC, Frechette S (2016) Current standards landscape for smart manufacturing systems. Natl Inst Stand Technol NISTIR 8107:39 Lu Y, Morris KC, Frechette S (2016) Current standards landscape for smart manufacturing systems. Natl Inst Stand Technol NISTIR 8107:39
136.
Zurück zum Zitat Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23CrossRef Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23CrossRef
137.
Zurück zum Zitat Wang L, Törngren M, Onori M (2015) Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst 37:517–527CrossRef Wang L, Törngren M, Onori M (2015) Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst 37:517–527CrossRef
138.
Zurück zum Zitat Monostori L et al (2016) Cyber-physical systems in manufacturing. CIRP Ann 65(2):621–641CrossRef Monostori L et al (2016) Cyber-physical systems in manufacturing. CIRP Ann 65(2):621–641CrossRef
139.
Zurück zum Zitat Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97CrossRef Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97CrossRef
Metadaten
Titel
Additive manufacturing embraces big data
verfasst von
Kaiming Bi
Dong Lin
Yiliang Liao
Chih-Hang Wu
Pedram Parandoush
Publikationsdatum
16.03.2021
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 2/2021
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-021-00172-8

Weitere Artikel der Ausgabe 2/2021

Progress in Additive Manufacturing 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.