Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2024

01.04.2024

Adequate viscosity-induced porous boundary layer flow and heat transfer over a permeable wedge

verfasst von: B. Jyothi, Ramesh B. Kudenatti

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study examines the impact of effective viscosity and suction/injection on the two-dimensional boundary layer flow and heat transfer across a wedge immersed in a porous medium. In this study, we analyze the mechanisms associated with porous media and the fluid, focusing specifically on the viscosity ratio(effective viscosity to the dynamic viscosity) effects. The movement or progression of the fluid outside the boundary layer is acquired in the form of a concept of fluid distance. The governing nonlinear ordinary differential equations are derived from the boundary layer equations with suitable similarity transformations. Two approaches are utilized in this study: comprehensive numerical simulations that solve the nonlinear fully coupled fluid-wedge interaction issue and asymptotic approaches that solve the linearized equation-acquired at a significant distance away from the wedge and a small Prandtl number. A high level of concordance exists between the two methodologies in their predictive capabilities. The velocity and temperature distributions for different favorable pressure gradient and suction parameters are to reduce both momentum and thermal boundary layer thickness, while an opposite scenario is noticed for injection parameters. These results are shown to be a continuation of classical Falkner-Skan flows. The viscosity ratio plays a role in reducing the thickness of the boundary layer, leading to the fluid exhibiting adhesion to the surface of the wedge. Moreover, the effect of permeability-the presence of a porous medium, reduces the thickness of the boundary layer. A comprehensive examination of the outcomes and their associated hydrodynamics concerning the physical parameters is conducted and made in some detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Klemp JB, Acrivos AA (1976) A moving-wall boundary layer with reverse flow. J Fluid Mech 76:363–381CrossRef Klemp JB, Acrivos AA (1976) A moving-wall boundary layer with reverse flow. J Fluid Mech 76:363–381CrossRef
3.
Zurück zum Zitat Kudenatti RB, Kirsur SR (2017) Numerical and asymptotic study of non-axisymmetric magnetohydrodynamic boundary layer stagnation point flows. Math Methods Appl Sci 40:5841–5850MathSciNetCrossRef Kudenatti RB, Kirsur SR (2017) Numerical and asymptotic study of non-axisymmetric magnetohydrodynamic boundary layer stagnation point flows. Math Methods Appl Sci 40:5841–5850MathSciNetCrossRef
4.
Zurück zum Zitat Thirupathi T, Mishra SR, Ali AM, Bhatti MM, Abdelsalam SI (2022) Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet. Appl Math Comput 421:126927 Thirupathi T, Mishra SR, Ali AM, Bhatti MM, Abdelsalam SI (2022) Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet. Appl Math Comput 421:126927
5.
Zurück zum Zitat Muhammad S, Rahila N, Abdelsalam SI (2020) Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model. Phys A: Stat Mech Appl 537:122753MathSciNetCrossRef Muhammad S, Rahila N, Abdelsalam SI (2020) Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model. Phys A: Stat Mech Appl 537:122753MathSciNetCrossRef
6.
Zurück zum Zitat Schlichting H, Gersten K (2004) Boundary layer theory, 8th edn. Springer, New York Schlichting H, Gersten K (2004) Boundary layer theory, 8th edn. Springer, New York
7.
Zurück zum Zitat Tzirtzilakis EE, Kafoussias NG (2010) Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet. ASME J Heat Transf 132(1):011702CrossRef Tzirtzilakis EE, Kafoussias NG (2010) Three-dimensional magnetic fluid boundary layer flow over a linearly stretching sheet. ASME J Heat Transf 132(1):011702CrossRef
8.
Zurück zum Zitat Grosan T, Pop I (2011) Forced convection boundary layer flow past nonisothermal thin needles in nanofluids. ASME J Heat Transf 133(5):054503CrossRef Grosan T, Pop I (2011) Forced convection boundary layer flow past nonisothermal thin needles in nanofluids. ASME J Heat Transf 133(5):054503CrossRef
9.
Zurück zum Zitat Dawood HK, Mohammad HA, Sidik NAC, Munisamy KM, Wahid MA (2015) Forced, natural and mixed-convection heat transfer and fluid flow in annulus: a review. Int Commun Heat Mass Transf 62:45–57CrossRef Dawood HK, Mohammad HA, Sidik NAC, Munisamy KM, Wahid MA (2015) Forced, natural and mixed-convection heat transfer and fluid flow in annulus: a review. Int Commun Heat Mass Transf 62:45–57CrossRef
10.
Zurück zum Zitat Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRef Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRef
11.
Zurück zum Zitat Sachdev PL, Kudenatti RB, Bujurke NM (2008) Exact analytical solution of a boundary value problem for the Falkner-Skan equation. Stud Appl Math 120:1–16MathSciNetCrossRef Sachdev PL, Kudenatti RB, Bujurke NM (2008) Exact analytical solution of a boundary value problem for the Falkner-Skan equation. Stud Appl Math 120:1–16MathSciNetCrossRef
12.
Zurück zum Zitat Vafai K, Tien CL (1981) Boundary and Inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transf 24:195–203CrossRef Vafai K, Tien CL (1981) Boundary and Inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transf 24:195–203CrossRef
13.
Zurück zum Zitat Vafai K, Tien CL (1982) Boundary and Inertia effects on convective mass transfer in porous media. Int J Heat Mass Transf 25:1183–1190CrossRef Vafai K, Tien CL (1982) Boundary and Inertia effects on convective mass transfer in porous media. Int J Heat Mass Transf 25:1183–1190CrossRef
14.
Zurück zum Zitat Nield DA, Bejan A (2013) Convection in porous media. Springer, New YorkCrossRef Nield DA, Bejan A (2013) Convection in porous media. Springer, New YorkCrossRef
15.
Zurück zum Zitat Hossain MA, Banu N, Nakayama A (1994) Non-Darcy forced convection boundary layer flow over a wedge embedded in a saturated porous medium. Numer Heat Transf Part A Appl: Int J Comput Methodol 26:399–414CrossRef Hossain MA, Banu N, Nakayama A (1994) Non-Darcy forced convection boundary layer flow over a wedge embedded in a saturated porous medium. Numer Heat Transf Part A Appl: Int J Comput Methodol 26:399–414CrossRef
16.
Zurück zum Zitat Seddeek MA (2005) Effects of non-Darcian on forced convection heat transfer over a flat plate in a porous medium-with temperature dependent viscosity. Int Commun Heat Mass Transf 32:258–265CrossRef Seddeek MA (2005) Effects of non-Darcian on forced convection heat transfer over a flat plate in a porous medium-with temperature dependent viscosity. Int Commun Heat Mass Transf 32:258–265CrossRef
17.
Zurück zum Zitat Harris SD, Ingham DB, Pop I (2009) Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp Porous Media 77:267–285CrossRef Harris SD, Ingham DB, Pop I (2009) Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp Porous Media 77:267–285CrossRef
18.
Zurück zum Zitat Tasi R, Hung JS (2009) Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface. Int J Heat Mass Transf 52:2399–2406CrossRef Tasi R, Hung JS (2009) Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface. Int J Heat Mass Transf 52:2399–2406CrossRef
19.
Zurück zum Zitat Tamayol A, Hooman K, Bahrami M (2010) Thermal analysis of flow in a porous medium over a permeable stretching wall. Transp Porous Medium 85(3):661–676MathSciNetCrossRef Tamayol A, Hooman K, Bahrami M (2010) Thermal analysis of flow in a porous medium over a permeable stretching wall. Transp Porous Medium 85(3):661–676MathSciNetCrossRef
20.
Zurück zum Zitat Hayat T, Qasim M, Abbas Z (2010) Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Commun Nonlinear Sci Numer Simul 15:2375–2387MathSciNetCrossRef Hayat T, Qasim M, Abbas Z (2010) Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Commun Nonlinear Sci Numer Simul 15:2375–2387MathSciNetCrossRef
21.
Zurück zum Zitat Mukhopadhyay S, Bhattacharya K, Layek GC (2011) Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation. Int J Heat Mass Transf 54:2751–2757CrossRef Mukhopadhyay S, Bhattacharya K, Layek GC (2011) Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation. Int J Heat Mass Transf 54:2751–2757CrossRef
22.
Zurück zum Zitat Khader MM, Megahed AM (2014) Differential transformation method for the flow and heat transfer due to a permeable stretching surface embedded in a porous medium with a second order slip and viscous dissipation. ASME J Heat Transf 136(7):072602CrossRef Khader MM, Megahed AM (2014) Differential transformation method for the flow and heat transfer due to a permeable stretching surface embedded in a porous medium with a second order slip and viscous dissipation. ASME J Heat Transf 136(7):072602CrossRef
23.
Zurück zum Zitat Zeeshan A, Maskeen MM, Mehmood OU (2018) Hydromagnetc nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media. Neural Comput Appl 30:3479CrossRef Zeeshan A, Maskeen MM, Mehmood OU (2018) Hydromagnetc nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media. Neural Comput Appl 30:3479CrossRef
24.
Zurück zum Zitat Kudenatti RB, Sandhya L (2021) Local thermal nonequilibrium analysis of boundary layer flow of Carreau fluid over a wedge in a porous medium. ASME J Heat Transf 143(7):071801CrossRef Kudenatti RB, Sandhya L (2021) Local thermal nonequilibrium analysis of boundary layer flow of Carreau fluid over a wedge in a porous medium. ASME J Heat Transf 143(7):071801CrossRef
25.
Zurück zum Zitat Ge-JiLe H, Mubbashar N, Siddique I (2021) Two-phase flow of MHD Jeffrey fluid with the suspension of tiny metallic particles incorporated with viscous dissipation and porous medium. Adv Mech Eng 13:16878140211005960CrossRef Ge-JiLe H, Mubbashar N, Siddique I (2021) Two-phase flow of MHD Jeffrey fluid with the suspension of tiny metallic particles incorporated with viscous dissipation and porous medium. Adv Mech Eng 13:16878140211005960CrossRef
26.
Zurück zum Zitat Mubbashar N, Khan MI, Khan SU, Saleem A, Muhammad T, Shah SI (2022) Assessment of heat and mass transfer characteristics in Poiseuille flow of non-Newtonian nanofluid in a porous channel with convectively heated lower wall. Chin J Phys 77:1065–1079MathSciNetCrossRef Mubbashar N, Khan MI, Khan SU, Saleem A, Muhammad T, Shah SI (2022) Assessment of heat and mass transfer characteristics in Poiseuille flow of non-Newtonian nanofluid in a porous channel with convectively heated lower wall. Chin J Phys 77:1065–1079MathSciNetCrossRef
27.
Zurück zum Zitat Givler RC, Altobelli SA (1994) Determination of the effective viscosity for the Brinkman-Forchheimer flow model. J Fluid Mech 258:355–370CrossRef Givler RC, Altobelli SA (1994) Determination of the effective viscosity for the Brinkman-Forchheimer flow model. J Fluid Mech 258:355–370CrossRef
28.
Zurück zum Zitat Kudenatti RB, Gogate SP (2018) Modelling the fluid flow and mass transfer through porous media with effective viscosity on the three-dimensional boundary layer. J Porous Media 21(11):1069–1084CrossRef Kudenatti RB, Gogate SP (2018) Modelling the fluid flow and mass transfer through porous media with effective viscosity on the three-dimensional boundary layer. J Porous Media 21(11):1069–1084CrossRef
29.
Zurück zum Zitat Schlichting H, Gersten K (2003) Boundary-layer theory, 8th revised. Springer, New York Schlichting H, Gersten K (2003) Boundary-layer theory, 8th revised. Springer, New York
30.
Zurück zum Zitat Cebeci T, Bradshaw P (1977) Momentum transfer in boundary layers. Mc. Graw Hill, New York Cebeci T, Bradshaw P (1977) Momentum transfer in boundary layers. Mc. Graw Hill, New York
31.
Zurück zum Zitat Yih KA (2001) Radiation effect on mixed convection over an isothermal wedge in porous media: the entire regime. Heat Transf Eng 22:26–32CrossRef Yih KA (2001) Radiation effect on mixed convection over an isothermal wedge in porous media: the entire regime. Heat Transf Eng 22:26–32CrossRef
32.
Zurück zum Zitat Kudenatti RB, Jyothi B (2019) Two-dimensional boundary layer flow and heat transfer over a wedge: numerical and asymptotic solutions. Therm Sci Eng Prog 11:66–73CrossRef Kudenatti RB, Jyothi B (2019) Two-dimensional boundary layer flow and heat transfer over a wedge: numerical and asymptotic solutions. Therm Sci Eng Prog 11:66–73CrossRef
33.
Zurück zum Zitat Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, Washington Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, Washington
34.
Zurück zum Zitat Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer, New YorkCrossRef Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer, New YorkCrossRef
35.
Zurück zum Zitat Evans HL (1968) Laminar boundary-layer theory. Addison-Wesley, London Evans HL (1968) Laminar boundary-layer theory. Addison-Wesley, London
36.
Zurück zum Zitat Paresh V, Ashutosh R (2010) Dissipative MHD boundary layer flow in porous medium over a sheet stretching nonlinearly in the presence of radiation. Appl Math Sci 63:3133–3142MathSciNet Paresh V, Ashutosh R (2010) Dissipative MHD boundary layer flow in porous medium over a sheet stretching nonlinearly in the presence of radiation. Appl Math Sci 63:3133–3142MathSciNet
Metadaten
Titel
Adequate viscosity-induced porous boundary layer flow and heat transfer over a permeable wedge
verfasst von
B. Jyothi
Ramesh B. Kudenatti
Publikationsdatum
01.04.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2024
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-024-10348-0

Weitere Artikel der Ausgabe 1/2024

Journal of Engineering Mathematics 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.