Skip to main content
Erschienen in: Education and Information Technologies 1/2022

08.07.2021

Adoption of virtual reality technology in higher education: An evaluation of five teaching semesters in a purpose-designed laboratory

verfasst von: Benjy Marks, Jacqueline Thomas

Erschienen in: Education and Information Technologies | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Virtual and augmented (VAR) technology is in the early stages of being adopted as a teaching platform in higher education. The technology can facilitate immersive learning in environments that are not usually physically accessible to students via 3D models and interactive 360° videos. To date, adoption rates of VAR technology for teaching have not been well described across a higher education institution. Further, there is an absence of information on the optimal VAR laboratory designs and cost per student. In this study, a purpose designed virtual reality laboratory was formed in 2017 at The University of Sydney, housing 26 Oculus Rift headset units. An evaluation was conducted on the design, costs, rates of teaching adoption and student experiences over five teaching periods (2.5 years). Over this period, 4833 students were taught in the laboratory across 7952 student visits. The laboratory was used most by the Faculty of Engineering (53%), followed by the Faculty of Arts & Social Science (23.8%) and Faculty of Science (23.2%). For engineering, the units of study using the laboratory represented only 1.4% of annual faculty subjects offered. This confirms that adoption was in the initial stage of innovation diffusion. The laboratory saw a 250% increase in student numbers over the period of evaluation and 71.5% of students surveyed (n = 295) reported enhanced learning outcomes. The cost per visit was only AU$ 19.50. These findings give confidence to higher education institutions that the right VAR technology infrastructure is a sound educational investment for the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Achuthan, K., Nedungadi, P., Kolil, V., Diwakar, S., & Raman, R. (2020). Innovation adoption and diffusion of virtual laboratories. International Journal of Online and Biomedical Engineering, 16(9), 4–25. Achuthan, K., Nedungadi, P., Kolil, V., Diwakar, S., & Raman, R. (2020). Innovation adoption and diffusion of virtual laboratories. International Journal of Online and Biomedical Engineering, 16(9), 4–25.
Zurück zum Zitat Cassani, R., Moinnereau, M. A., Ivanescu, L., Rosanne, O., & Falk, T. H. (2020). Neural Interface instrumented virtual reality headsets: Toward next-generation immersive applications. IEEE Systems Man and Cybernetics Magazine, 6(3), 20–28.CrossRef Cassani, R., Moinnereau, M. A., Ivanescu, L., Rosanne, O., & Falk, T. H. (2020). Neural Interface instrumented virtual reality headsets: Toward next-generation immersive applications. IEEE Systems Man and Cybernetics Magazine, 6(3), 20–28.CrossRef
Zurück zum Zitat Dietrich, N., Kentheswaran, K., Ahmadi, A., Teychene, J., Bessiere, Y., Alfenore, S., Laborie, S., Bastoul, D., Loubiere, K., Guigui, C., Sperandio, M., Barna, L., Paul, E., Cabassud, C., Line, A., & Hebrard, G. (2020). Attempts, successes, and failures of distance learning in the time of COVID-19. Journal of Chemical Education, 97(9), 2448–2457.CrossRef Dietrich, N., Kentheswaran, K., Ahmadi, A., Teychene, J., Bessiere, Y., Alfenore, S., Laborie, S., Bastoul, D., Loubiere, K., Guigui, C., Sperandio, M., Barna, L., Paul, E., Cabassud, C., Line, A., & Hebrard, G. (2020). Attempts, successes, and failures of distance learning in the time of COVID-19. Journal of Chemical Education, 97(9), 2448–2457.CrossRef
Zurück zum Zitat Estrada, J. G., & Prasolova-Forland, E. (2021). Running an XR lab in the context of COVID-19 pandemic: Lessons learned from a Norwegian university. Education and Information Technologies, 17. Estrada, J. G., & Prasolova-Forland, E. (2021). Running an XR lab in the context of COVID-19 pandemic: Lessons learned from a Norwegian university. Education and Information Technologies, 17.
Zurück zum Zitat Grivokostopoulou, F., Kovas, K., & Perikos, I. (2020). The effectiveness of embodied pedagogical agents and their impact on students learning in virtual worlds. Applied Sciences-Basel, 10(5), 14. Grivokostopoulou, F., Kovas, K., & Perikos, I. (2020). The effectiveness of embodied pedagogical agents and their impact on students learning in virtual worlds. Applied Sciences-Basel, 10(5), 14.
Zurück zum Zitat Hadigheh, A., Vulic, J., Burridge, J., Goldfinch, T., Thomas, J., & Opdyke, A. (2019). Preliminary evaluation of immersive and collaborative virtual labs in a structural engineering unit of study. 30th Annual Conference for the Australasian Association for Engineering Education (AAEE 2019). Brisbane, Engineers Australia (pp. 389–396). Hadigheh, A., Vulic, J., Burridge, J., Goldfinch, T., Thomas, J., & Opdyke, A. (2019). Preliminary evaluation of immersive and collaborative virtual labs in a structural engineering unit of study. 30th Annual Conference for the Australasian Association for Engineering Education (AAEE 2019). Brisbane, Engineers Australia (pp. 389–396).
Zurück zum Zitat Hernandez-de-Menendez, M., Diaz, C. E., & Morales-Menendez, R. (2020). Technologies for the future of learning: State of the art. International Journal of Interactive Design and Manufacturing, 14(2), 683–695.CrossRef Hernandez-de-Menendez, M., Diaz, C. E., & Morales-Menendez, R. (2020). Technologies for the future of learning: State of the art. International Journal of Interactive Design and Manufacturing, 14(2), 683–695.CrossRef
Zurück zum Zitat Ijaz, K., Marks, B., Hartley, T., Gibbens, P., & Thomas, J. (2017). The immersive learning laboratory: Employing virtual reality technology in teaching. In N. Huda, D. Inglis, N. Tse, & G. Town (Eds.), 28th Annual Conference of the Australasian Association for Engineering Education (AAEE 2017) (pp. 974–981). Sydney: Australasian Association for Engineering Education. Ijaz, K., Marks, B., Hartley, T., Gibbens, P., & Thomas, J. (2017). The immersive learning laboratory: Employing virtual reality technology in teaching. In N. Huda, D. Inglis, N. Tse, & G. Town (Eds.), 28th Annual Conference of the Australasian Association for Engineering Education (AAEE 2017) (pp. 974–981). Sydney: Australasian Association for Engineering Education.
Zurück zum Zitat Ijaz, K., Thomas, J., & Ahmadpour, N. (2018). Immersive VR Learning Experiences: Do Expectations Meet Reality? 30th Australian Computer-Human Interaction Conference (OzCHI), Melbourne, Association for Computing Machinery. Ijaz, K., Thomas, J., & Ahmadpour, N. (2018). Immersive VR Learning Experiences: Do Expectations Meet Reality? 30th Australian Computer-Human Interaction Conference (OzCHI), Melbourne, Association for Computing Machinery.
Zurück zum Zitat Kaminska, D., Sapinski, T., Aitken, N., Della Rocca, A., Baranska, M., & Wietsma, R. (2017). Virtual reality as a new trend in mechanical and electrical engineering education. Open Physics, 15(1), 936–941.CrossRef Kaminska, D., Sapinski, T., Aitken, N., Della Rocca, A., Baranska, M., & Wietsma, R. (2017). Virtual reality as a new trend in mechanical and electrical engineering education. Open Physics, 15(1), 936–941.CrossRef
Zurück zum Zitat Kaminska, D., Sapinski, T., Wiak, S., Tikk, T., Haamer, R. E., Avots, E., Helmi, A., Ozcinar, C., & Anbarjafari, G. (2019). Virtual reality and its applications in education: Survey. Information, 10(10), 20.CrossRef Kaminska, D., Sapinski, T., Wiak, S., Tikk, T., Haamer, R. E., Avots, E., Helmi, A., Ozcinar, C., & Anbarjafari, G. (2019). Virtual reality and its applications in education: Survey. Information, 10(10), 20.CrossRef
Zurück zum Zitat Portman, M. E., Natapov, A., & Fisher-Gewirtzman, D. (2015). To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning. Computers Environment and Urban Systems, 54, 376–384.CrossRef Portman, M. E., Natapov, A., & Fisher-Gewirtzman, D. (2015). To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning. Computers Environment and Urban Systems, 54, 376–384.CrossRef
Zurück zum Zitat Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327.CrossRef Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327.CrossRef
Zurück zum Zitat Reeves, S. M., & Crippen, K. J. (2020). Virtual laboratories in undergraduate science and engineering courses: A systematic review, 2009–2019. Journal of Science Education and Technology, 15. Reeves, S. M., & Crippen, K. J. (2020). Virtual laboratories in undergraduate science and engineering courses: A systematic review, 2009–2019. Journal of Science Education and Technology, 15.
Zurück zum Zitat Rogers, E. (1995). Diffusion of innovations. Free Press. Rogers, E. (1995). Diffusion of innovations. Free Press.
Zurück zum Zitat Shirazi, A., & Behzadan, A. (2015). Design and assessment of a mobile augmented reality-based information delivery tool for construction and civil engineering curriculum. Journal of Professional Issues in Engineering Education and Practice, 141(3), 10.CrossRef Shirazi, A., & Behzadan, A. (2015). Design and assessment of a mobile augmented reality-based information delivery tool for construction and civil engineering curriculum. Journal of Professional Issues in Engineering Education and Practice, 141(3), 10.CrossRef
Zurück zum Zitat Straub, E. T. (2009). Understanding technology adoption: Theory and future directions for informal learning. Review of Educational Research, 79(2), 625–649.CrossRef Straub, E. T. (2009). Understanding technology adoption: Theory and future directions for informal learning. Review of Educational Research, 79(2), 625–649.CrossRef
Zurück zum Zitat Thomas, J., Cafe, P., & Matous, P. (2017). Lessons learned from the design and delivery of a new major in humanitarian engineering. In N. Huda, D. Inglis, N. Tse, & G. Town (Eds.), 28th Annual Conference of the Australiasian Association for Engineering (AAEE 2017) (pp. 1006–1016). Sydney: Australasian Association for Engineering Education. Thomas, J., Cafe, P., & Matous, P. (2017). Lessons learned from the design and delivery of a new major in humanitarian engineering. In N. Huda, D. Inglis, N. Tse, & G. Town (Eds.), 28th Annual Conference of the Australiasian Association for Engineering (AAEE 2017) (pp. 1006–1016). Sydney: Australasian Association for Engineering Education.
Zurück zum Zitat Thomas, J., Marks, B., Gibbens, P., Keith, W., Ijaz, K., & Magdas, P. (2019). Immersive Learning Laboratory annual report: 2017–2018 (p. 22). Sydney: The University of Sydney. Thomas, J., Marks, B., Gibbens, P., Keith, W., Ijaz, K., & Magdas, P. (2019). Immersive Learning Laboratory annual report: 2017–2018 (p. 22). Sydney: The University of Sydney.
Zurück zum Zitat Walker, J., Towey, D., Pike, M., Kapogiannis, G., Elamin, A., & Wei, R. (2020). Developing a pedagogical photoreal virtual environment to teach civil engineering. Interactive Technology and Smart Education, 17(3), 303–321.CrossRef Walker, J., Towey, D., Pike, M., Kapogiannis, G., Elamin, A., & Wei, R. (2020). Developing a pedagogical photoreal virtual environment to teach civil engineering. Interactive Technology and Smart Education, 17(3), 303–321.CrossRef
Metadaten
Titel
Adoption of virtual reality technology in higher education: An evaluation of five teaching semesters in a purpose-designed laboratory
verfasst von
Benjy Marks
Jacqueline Thomas
Publikationsdatum
08.07.2021
Verlag
Springer US
Erschienen in
Education and Information Technologies / Ausgabe 1/2022
Print ISSN: 1360-2357
Elektronische ISSN: 1573-7608
DOI
https://doi.org/10.1007/s10639-021-10653-6

Weitere Artikel der Ausgabe 1/2022

Education and Information Technologies 1/2022 Zur Ausgabe

Premium Partner