Skip to main content

2023 | OriginalPaper | Buchkapitel

8. Adsorptive Removal of Fluoride from Water Using Iron Oxide-Hydrogen Nanoparticles

verfasst von : Archana Kushwaha, Zeenat Arif, Bineeta Singh

Erschienen in: Advanced Treatment Technologies for Fluoride Removal in Water

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluoride, a naturally occurring element, is released from rocks into the land, water, and air. The WHO recommends 1 mg/L of fluoride in drinking water as the ideal or recommended amount. An abundance of fluoride ions can cause dental/skeletal fluorosis, muscular and bone damage, chronicle issues, inhibit the photosynthesis process, and enzymatic and metabolic activities in aquatic organisms. Membrane filtration processes, reverse osmosis, electrodialysis are widely used treatment processes for the removal of fluoride; however, they are expensive and complex. The adsorption method is considered to be an effective technique because of the low operating costs, the capacity to hold metal ions at low concentrations, and the availability of a variety of adsorbents for treatment applications, which makes it an attractive option. If there are opposing anions present including chloride, iodide, and sulfate, then the iron oxide-hydroxide nanoparticles demonstrate their effectiveness as a repeatable and efficient adsorbent medium for defluoridating water. This chapter deals with adsorptive removal of fluoride removal using iron-based adsorption techniques and highlights different parameters affecting the performance of adsorption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Affonso, L. N., Marques, J. L., Jr., Lima, V. V., Gonçalves, J. O., Barbosa, S. C., Primel, E. G., Burgo, T. A., Dotto, G. L., Pinto, L. A., & Cadaval, T. R., Jr. (2020). Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. Journal of Hazardous Materials, 388, 122042.PubMedCrossRef Affonso, L. N., Marques, J. L., Jr., Lima, V. V., Gonçalves, J. O., Barbosa, S. C., Primel, E. G., Burgo, T. A., Dotto, G. L., Pinto, L. A., & Cadaval, T. R., Jr. (2020). Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. Journal of Hazardous Materials, 388, 122042.PubMedCrossRef
Zurück zum Zitat Ahmadijokani, F., Molavi, H., Rezakazemi, M., Aminabhavi, T. M., & Arjmand, M. (2021). Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents. Coordination Chemistry Reviews, 445, 214037.CrossRef Ahmadijokani, F., Molavi, H., Rezakazemi, M., Aminabhavi, T. M., & Arjmand, M. (2021). Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents. Coordination Chemistry Reviews, 445, 214037.CrossRef
Zurück zum Zitat Alinejad-Mir, A., Amooey, A. A., & Ghasemi, S. (2018). Adsorption of direct yellow 12 from aqueous solutions by an iron oxide-gelatin nanoadsorbent; kinetic, isotherm and mechanism analysis. Journal of Cleaner Production, 170, 570–580. Alinejad-Mir, A., Amooey, A. A., & Ghasemi, S. (2018). Adsorption of direct yellow 12 from aqueous solutions by an iron oxide-gelatin nanoadsorbent; kinetic, isotherm and mechanism analysis. Journal of Cleaner Production, 170, 570–580.
Zurück zum Zitat Altuntas, K., & Debik, E. (2017). DDT removal by nano zero valent iron: Influence of pH on removal mechanism. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 1, 339–346. Altuntas, K., & Debik, E. (2017). DDT removal by nano zero valent iron: Influence of pH on removal mechanism. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 1, 339–346.
Zurück zum Zitat Aragaw, T. A. (2020). Recovery of iron hydroxides from electro-coagulated sludge for adsorption removals of dye wastewater: Adsorption capacity and adsorbent characteristics. Surfaces and Interfaces, 18, 100439.CrossRef Aragaw, T. A. (2020). Recovery of iron hydroxides from electro-coagulated sludge for adsorption removals of dye wastewater: Adsorption capacity and adsorbent characteristics. Surfaces and Interfaces, 18, 100439.CrossRef
Zurück zum Zitat Aryal, R. L., Poudel, B. R., Gautam, S. K., Paudyal, H., Ghimire, K. N., & Pokhrel, M. R. (2019). Removal of fluoride from aqueous solution using biomass-based adsorbents: A review. Journal of Nepal Chemical Society, 40, 44–51.CrossRef Aryal, R. L., Poudel, B. R., Gautam, S. K., Paudyal, H., Ghimire, K. N., & Pokhrel, M. R. (2019). Removal of fluoride from aqueous solution using biomass-based adsorbents: A review. Journal of Nepal Chemical Society, 40, 44–51.CrossRef
Zurück zum Zitat Ashraf, M. A., & Mohd Hanafiah, M. (2019). Sustaining life on earth system through clean air, pure water, and fertile soil. Environmental Science and Pollution Research, 26(14), 13679–13680. Ashraf, M. A., & Mohd Hanafiah, M. (2019). Sustaining life on earth system through clean air, pure water, and fertile soil. Environmental Science and Pollution Research, 26(14), 13679–13680.
Zurück zum Zitat Bagastyo, A. Y., Anggrainy, A. D., & Nindita, C. S. (2017). Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater. Sustainable Environment Research, 27(5), 230–237.CrossRef Bagastyo, A. Y., Anggrainy, A. D., & Nindita, C. S. (2017). Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater. Sustainable Environment Research, 27(5), 230–237.CrossRef
Zurück zum Zitat Bhan, C., Singh, J., & Sharma, Y. C. (2021). Development of adsorbent from Mentha plant ash and its application in fluoride adsorption from aqueous solution: A mechanism, isotherm, thermodynamic, and kinetics studies. International Journal of Phytoremediation, 23(11), 1113–1123.PubMedCrossRef Bhan, C., Singh, J., & Sharma, Y. C. (2021). Development of adsorbent from Mentha plant ash and its application in fluoride adsorption from aqueous solution: A mechanism, isotherm, thermodynamic, and kinetics studies. International Journal of Phytoremediation, 23(11), 1113–1123.PubMedCrossRef
Zurück zum Zitat Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F. M., Khan, M. I., & Jalal, F. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8(6), 6115–6124.CrossRef Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F. M., Khan, M. I., & Jalal, F. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8(6), 6115–6124.CrossRef
Zurück zum Zitat Biftu, W. K., Ravindhranath, K., & Ramamoorty, M. (2020). New research trends in the processing and applications of iron-based nanoparticles as adsorbents in water remediation methods. Nanotechnology for Environmental Engineering, 5(2), 1–12.CrossRef Biftu, W. K., Ravindhranath, K., & Ramamoorty, M. (2020). New research trends in the processing and applications of iron-based nanoparticles as adsorbents in water remediation methods. Nanotechnology for Environmental Engineering, 5(2), 1–12.CrossRef
Zurück zum Zitat Biswas, G., Thakurta, S. G., Chakrabarty, J., Adhikari, K., & Dutta, S. (2018). Evaluation of fluoride bioremediation and production of biomolecules by living cyanobacteria under fluoride stress condition. Ecotoxicology and Environmental Safety, 148, 26–36.PubMedCrossRef Biswas, G., Thakurta, S. G., Chakrabarty, J., Adhikari, K., & Dutta, S. (2018). Evaluation of fluoride bioremediation and production of biomolecules by living cyanobacteria under fluoride stress condition. Ecotoxicology and Environmental Safety, 148, 26–36.PubMedCrossRef
Zurück zum Zitat Cadaval, T. R., Dotto, G. L., & Pinto, L. A. (2015). Equilibrium isotherms, thermodynamics, and kinetic studies for the adsorption of food azo dyes onto chitosan films. Chemical Engineering Communications, 202(10), 1316–1323.CrossRef Cadaval, T. R., Dotto, G. L., & Pinto, L. A. (2015). Equilibrium isotherms, thermodynamics, and kinetic studies for the adsorption of food azo dyes onto chitosan films. Chemical Engineering Communications, 202(10), 1316–1323.CrossRef
Zurück zum Zitat Chaudhary, M., Jain, N., & Maiti, A. (2021). A comparative adsorption kinetic modeling of fluoride adsorption by nanoparticles and its polymeric nanocomposite. Journal of Environmental Chemical Engineering, 9(5), 105595.CrossRef Chaudhary, M., Jain, N., & Maiti, A. (2021). A comparative adsorption kinetic modeling of fluoride adsorption by nanoparticles and its polymeric nanocomposite. Journal of Environmental Chemical Engineering, 9(5), 105595.CrossRef
Zurück zum Zitat Chong, W. C., Choo, Y. L., Koo, C. H., Pang, Y. L., & Lai, S. O. (2019, September). Adsorptive membranes for heavy metal removal—A mini review. In AIP Conference Proceedings (Vol. 2157, No. 1, p. 020005). AIP Publishing LLC. Chong, W. C., Choo, Y. L., Koo, C. H., Pang, Y. L., & Lai, S. O. (2019, September). Adsorptive membranes for heavy metal removal—A mini review. In AIP Conference Proceedings (Vol. 2157, No. 1, p. 020005). AIP Publishing LLC.
Zurück zum Zitat Dehbi, A., Dehmani, Y., Omari, H., Lammini, A., Elazhari, K., & Abdallaoui, A. (2020). Hematite iron oxide nanoparticles (α-Fe2O3): Synthesis and modeling adsorption of malachite green. Journal of Environmental Chemical Engineering, 8(1), 103394.CrossRef Dehbi, A., Dehmani, Y., Omari, H., Lammini, A., Elazhari, K., & Abdallaoui, A. (2020). Hematite iron oxide nanoparticles (α-Fe2O3): Synthesis and modeling adsorption of malachite green. Journal of Environmental Chemical Engineering, 8(1), 103394.CrossRef
Zurück zum Zitat Ezzeddine, A., Bedoui, A., Hannachi, A., & Bensalah, N. (2015). Removal of fluoride from aluminum fluoride manufacturing wastewater by precipitation and adsorption processes. Desalination and Water Treatment, 54(8), 2280–2292.CrossRef Ezzeddine, A., Bedoui, A., Hannachi, A., & Bensalah, N. (2015). Removal of fluoride from aluminum fluoride manufacturing wastewater by precipitation and adsorption processes. Desalination and Water Treatment, 54(8), 2280–2292.CrossRef
Zurück zum Zitat Feitoza, N. C., Goncalves, T. D., Mesquita, J. J., Menegucci, J. S., Santos, M. K. M., Chaker, J. A., Cunha, R. B., Medeiros, A. M., Rubim, J. C., & Sousa, M. H. (2014). Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. Journal of Hazardous Materials, 264, 153–160.PubMedCrossRef Feitoza, N. C., Goncalves, T. D., Mesquita, J. J., Menegucci, J. S., Santos, M. K. M., Chaker, J. A., Cunha, R. B., Medeiros, A. M., Rubim, J. C., & Sousa, M. H. (2014). Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. Journal of Hazardous Materials, 264, 153–160.PubMedCrossRef
Zurück zum Zitat Grover, V. A., Hu, J., Engates, K. E., & Sipley, H. J. (2012). Adsorption and desorption of bivalent metals to hematite nanoparticles. Environmental Toxicology and Chemistry, 31, 86–92.PubMedCrossRef Grover, V. A., Hu, J., Engates, K. E., & Sipley, H. J. (2012). Adsorption and desorption of bivalent metals to hematite nanoparticles. Environmental Toxicology and Chemistry, 31, 86–92.PubMedCrossRef
Zurück zum Zitat Grzegorzek, M., Majewska-Nowak, K., & Ahmed, A. E. (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Science of the Total Environment, 722, 137681.ADSPubMedCrossRef Grzegorzek, M., Majewska-Nowak, K., & Ahmed, A. E. (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Science of the Total Environment, 722, 137681.ADSPubMedCrossRef
Zurück zum Zitat Habuda-Stanić, M., Ergović Ravančić, M., & Flanagan, A. (2014). A review on adsorption of fluoride from aqueous solution. Materials, 7(9), 6317–6366. Habuda-Stanić, M., Ergović Ravančić, M., & Flanagan, A. (2014). A review on adsorption of fluoride from aqueous solution. Materials, 7(9), 6317–6366.
Zurück zum Zitat Hao, Y. M., Man, C., & Hu, Z. B. (2010). Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Journal of Hazardous Materials, 184(1–3), 392–399.ADSPubMedCrossRef Hao, Y. M., Man, C., & Hu, Z. B. (2010). Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Journal of Hazardous Materials, 184(1–3), 392–399.ADSPubMedCrossRef
Zurück zum Zitat Hashemifar, M., ShamsKhorramabady, G., Nilufari, N., Mehrabpour, M., & Davoudi, M. (2014). Preparation of nano iron oxide coated activated sludge granules and its adsorption properties for Cd (II) ions in aqueous solutions. Research Journal of Environmental and Earth Sciences, 6(5), 259–265.CrossRef Hashemifar, M., ShamsKhorramabady, G., Nilufari, N., Mehrabpour, M., & Davoudi, M. (2014). Preparation of nano iron oxide coated activated sludge granules and its adsorption properties for Cd (II) ions in aqueous solutions. Research Journal of Environmental and Earth Sciences, 6(5), 259–265.CrossRef
Zurück zum Zitat Jeyaseelan, A., Naushad, M., Ahamad, T., & Viswanathan, N. (2021). Design and development of amine functionalized iron based metal organic frameworks for selective fluoride removal from water environment. Journal of Environmental Chemical Engineering, 9(1), 104563.CrossRef Jeyaseelan, A., Naushad, M., Ahamad, T., & Viswanathan, N. (2021). Design and development of amine functionalized iron based metal organic frameworks for selective fluoride removal from water environment. Journal of Environmental Chemical Engineering, 9(1), 104563.CrossRef
Zurück zum Zitat Khan, A. M., & Ganai, S. A. (2020). Removal and recovery of heavy metal ions using natural adsorbents. Modern Age Waste Water problems: Solutions Using Applied Nanotechnology, 251–260. Khan, A. M., & Ganai, S. A. (2020). Removal and recovery of heavy metal ions using natural adsorbents. Modern Age Waste Water problems: Solutions Using Applied Nanotechnology, 251–260.
Zurück zum Zitat Khodabakhshi, A., Amin, M., & Mozaffari, M. (2011). Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Journal of Environmental Health Science & Engineering, 8(3), 189–200. Khodabakhshi, A., Amin, M., & Mozaffari, M. (2011). Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Journal of Environmental Health Science & Engineering, 8(3), 189–200.
Zurück zum Zitat Lawal, A. A., Hassan, M. A., Zakaria, M. R., Yusoff, M. Z. M., Norrrahim, M. N. F., Mokhtar, M. N., & Shirai, Y. (2021). Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresource Technology, 332, 125070.PubMedCrossRef Lawal, A. A., Hassan, M. A., Zakaria, M. R., Yusoff, M. Z. M., Norrrahim, M. N. F., Mokhtar, M. N., & Shirai, Y. (2021). Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresource Technology, 332, 125070.PubMedCrossRef
Zurück zum Zitat Li, J., Chen, C., Zhu, K., & Wang, X. (2016). Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. Journal of the Taiwan Institute of Chemical Engineers, 59, 389–394.CrossRef Li, J., Chen, C., Zhu, K., & Wang, X. (2016). Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. Journal of the Taiwan Institute of Chemical Engineers, 59, 389–394.CrossRef
Zurück zum Zitat Li, Y., Fu, F., Cai, W., & Tang, B. (2019). Synergistic effect of mesoporous feroxyhyte nanoparticles and Fe(II) on phosphate immobilization: Adsorption and chemical precipitation. Powder Technology, 345, 786–795.CrossRef Li, Y., Fu, F., Cai, W., & Tang, B. (2019). Synergistic effect of mesoporous feroxyhyte nanoparticles and Fe(II) on phosphate immobilization: Adsorption and chemical precipitation. Powder Technology, 345, 786–795.CrossRef
Zurück zum Zitat Lin, S., Lu, D., & Liu, Z. (2012). Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chemical Engineering Journal, 211, 46–52.CrossRef Lin, S., Lu, D., & Liu, Z. (2012). Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chemical Engineering Journal, 211, 46–52.CrossRef
Zurück zum Zitat Lingamdinne, L. P., Vemula, K. R., Chang, Y. Y., Yang, J. K., Karri, R. R., & Koduru, J. R. (2020). Process optimization and modeling of lead removal using iron oxide nanocomposites generated from bio-waste mass. Chemosphere, 243, 125257.ADSPubMedCrossRef Lingamdinne, L. P., Vemula, K. R., Chang, Y. Y., Yang, J. K., Karri, R. R., & Koduru, J. R. (2020). Process optimization and modeling of lead removal using iron oxide nanocomposites generated from bio-waste mass. Chemosphere, 243, 125257.ADSPubMedCrossRef
Zurück zum Zitat Lou, T., Yan, X., & Wang, X. (2019). Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption. International Journal of Biological Macromolecules, 135, 919–925.PubMedCrossRef Lou, T., Yan, X., & Wang, X. (2019). Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption. International Journal of Biological Macromolecules, 135, 919–925.PubMedCrossRef
Zurück zum Zitat Maia, L. F., Hott, R. C., Ladeira, P. C., Batista, B. L., Andrade, T. G., Santos, M. S., Faria, M. C., Oliveira, L. C., Monteiro, D. S., Pereira, M. C., & Rodrigues, J. L. (2019). Simple synthesis and characterization of l-Cystine functionalized δ-FeOOH for highly efficient Hg(II) removal from contamined water and mining waste. Chemosphere, 215, 422–431.ADSPubMedCrossRef Maia, L. F., Hott, R. C., Ladeira, P. C., Batista, B. L., Andrade, T. G., Santos, M. S., Faria, M. C., Oliveira, L. C., Monteiro, D. S., Pereira, M. C., & Rodrigues, J. L. (2019). Simple synthesis and characterization of l-Cystine functionalized δ-FeOOH for highly efficient Hg(II) removal from contamined water and mining waste. Chemosphere, 215, 422–431.ADSPubMedCrossRef
Zurück zum Zitat Mandal, M., & Ghosh, U. (2018). Value addition to horticultural solid waste by applying it in biosynthesis of industrially important enzyme: Cellulase. In Utilization and Management of Bioresources: Proceedings of 6th IconSWM 2016 (pp. 279–289). Springer Singapore. Mandal, M., & Ghosh, U. (2018). Value addition to horticultural solid waste by applying it in biosynthesis of industrially important enzyme: Cellulase. In Utilization and Management of Bioresources: Proceedings of 6th IconSWM 2016 (pp. 279–289). Springer Singapore.
Zurück zum Zitat Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10(5), 89. Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes, 10(5), 89.
Zurück zum Zitat Pang, T., Chan, T. S. A., Jande, Y. A. C., & Shen, J. (2020). Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. Chemosphere, 255, 126950.ADSPubMedCrossRef Pang, T., Chan, T. S. A., Jande, Y. A. C., & Shen, J. (2020). Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method. Chemosphere, 255, 126950.ADSPubMedCrossRef
Zurück zum Zitat Parham, H., Zargar, B., & Shiralipour, R. (2012). Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. Journal of Hazardous Materials, 205, 94–100.PubMedCrossRef Parham, H., Zargar, B., & Shiralipour, R. (2012). Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. Journal of Hazardous Materials, 205, 94–100.PubMedCrossRef
Zurück zum Zitat Park, G., Hong, S. P., Lee, C., Lee, J., & Yoon, J. (2021). Selective fluoride removal in capacitive deionization by reduced graphene oxide/hydroxyapatite composite electrode. Journal of Colloid and Interface Science, 581, 396–402.ADSPubMedCrossRef Park, G., Hong, S. P., Lee, C., Lee, J., & Yoon, J. (2021). Selective fluoride removal in capacitive deionization by reduced graphene oxide/hydroxyapatite composite electrode. Journal of Colloid and Interface Science, 581, 396–402.ADSPubMedCrossRef
Zurück zum Zitat Pillai, P., Dharaskar, S., Shah, M., & Sultania, R. (2020a). Determination of fluoride removal using silica nano adsorbent modified by rice husk from water. Groundwater for Sustainable Development, 11, 100423.CrossRef Pillai, P., Dharaskar, S., Shah, M., & Sultania, R. (2020a). Determination of fluoride removal using silica nano adsorbent modified by rice husk from water. Groundwater for Sustainable Development, 11, 100423.CrossRef
Zurück zum Zitat Pillai, P., Dharaskar, S., Sinha, M. K., Sillanpää, M., & Khalid, M. (2020b). Iron oxide nanoparticles modified with ionic liquid as an efficient adsorbent for fluoride removal from groundwater. Environmental Technology & Innovation, 19, 100842.CrossRef Pillai, P., Dharaskar, S., Sinha, M. K., Sillanpää, M., & Khalid, M. (2020b). Iron oxide nanoparticles modified with ionic liquid as an efficient adsorbent for fluoride removal from groundwater. Environmental Technology & Innovation, 19, 100842.CrossRef
Zurück zum Zitat Raghav, S., & Kumar, D. (2019). Comparative kinetics and thermodynamic studies of fluoride adsorption by two novel synthesized biopolymer composites. Carbohydrate Polymers, 203, 430–440.PubMedCrossRef Raghav, S., & Kumar, D. (2019). Comparative kinetics and thermodynamic studies of fluoride adsorption by two novel synthesized biopolymer composites. Carbohydrate Polymers, 203, 430–440.PubMedCrossRef
Zurück zum Zitat Rashmi, S. H., Madhu, G. M., Kittur, A., & Suresh, R. (2013). Synthesis, characterization and application of zero valent iron nanoparticles for the removal of toxic metal hexavalent chromium [Cr(VI)] from aqueous solution. International Journal of Current Engineering and Technology, 1, 37–42. Rashmi, S. H., Madhu, G. M., Kittur, A., & Suresh, R. (2013). Synthesis, characterization and application of zero valent iron nanoparticles for the removal of toxic metal hexavalent chromium [Cr(VI)] from aqueous solution. International Journal of Current Engineering and Technology, 1, 37–42.
Zurück zum Zitat Raul, P. K., Devi, R. R., Umlong, I. M., Banerjee, S., Singh, L., & Purkait, M. (2012). Removal of fluoride from water using iron oxide-hydroxide nanoparticles. Journal of Nanoscience and Nanotechnology, 12(5), 3922–3930.PubMedCrossRef Raul, P. K., Devi, R. R., Umlong, I. M., Banerjee, S., Singh, L., & Purkait, M. (2012). Removal of fluoride from water using iron oxide-hydroxide nanoparticles. Journal of Nanoscience and Nanotechnology, 12(5), 3922–3930.PubMedCrossRef
Zurück zum Zitat Reddy, M. S., Sivaramakrishna, L., & Reddy, A. V. (2012). The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. Journal of Hazardous Materials, 203, 118–127.PubMedCrossRef Reddy, M. S., Sivaramakrishna, L., & Reddy, A. V. (2012). The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. Journal of Hazardous Materials, 203, 118–127.PubMedCrossRef
Zurück zum Zitat Sahu, N., Bhan, C., & Singh, J. (2021). Removal of fluoride from an aqueous solution by batch and column process using activated carbon derived from iron infused Pisum sativum peel: Characterization, Isotherm, kinetics study. Environmental Engineering Research, 26(4). Sahu, N., Bhan, C., & Singh, J. (2021). Removal of fluoride from an aqueous solution by batch and column process using activated carbon derived from iron infused Pisum sativum peel: Characterization, Isotherm, kinetics study. Environmental Engineering Research26(4).
Zurück zum Zitat Sawangjang, B., Induvesa, P., Wongrueng, A., Pumas, C., Wattanachira, S., Rakruam, P., Punyapalakul, P., Takizawa, S., & Khan, E. (2021). Evaluation of fluoride adsorption mechanism and capacity of different types of bone char. International Journal of Environmental Research and Public Health, 18(13), 6878.PubMedPubMedCentralCrossRef Sawangjang, B., Induvesa, P., Wongrueng, A., Pumas, C., Wattanachira, S., Rakruam, P., Punyapalakul, P., Takizawa, S., & Khan, E. (2021). Evaluation of fluoride adsorption mechanism and capacity of different types of bone char. International Journal of Environmental Research and Public Health, 18(13), 6878.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sharma, P. P., Yadav, V., Maru, P. D., Makwana, B. S., Sharma, S., & Kulshrestha, V. (2018). Mitigation of fluoride from brackish water via electrodialysis: An environmentally friendly process. Chemistry Select, 3(2), 779–784. Sharma, P. P., Yadav, V., Maru, P. D., Makwana, B. S., Sharma, S., & Kulshrestha, V. (2018). Mitigation of fluoride from brackish water via electrodialysis: An environmentally friendly process. Chemistry Select, 3(2), 779–784.
Zurück zum Zitat Sun, R., Zhang, H. B., Qu, J., Yao, H., Yao, J., & Yu, Z. Z. (2016). Supercritical carbon dioxide fluid assisted synthesis of hierarchical AlOOH@ reduced graphene oxide hybrids for efficient removal of fluoride ions. Chemical Engineering Journal, 292, 174–182.CrossRef Sun, R., Zhang, H. B., Qu, J., Yao, H., Yao, J., & Yu, Z. Z. (2016). Supercritical carbon dioxide fluid assisted synthesis of hierarchical AlOOH@ reduced graphene oxide hybrids for efficient removal of fluoride ions. Chemical Engineering Journal, 292, 174–182.CrossRef
Zurück zum Zitat Tolkou, A. K., Manousi, N., Zachariadis, G. A., Katsoyiannis, I. A., & Deliyanni, E. A. (2021). Recently developed adsorbing materials for fluoride removal from water and fluoride analytical determination techniques: A review. Sustainability, 13(13), 7061.CrossRef Tolkou, A. K., Manousi, N., Zachariadis, G. A., Katsoyiannis, I. A., & Deliyanni, E. A. (2021). Recently developed adsorbing materials for fluoride removal from water and fluoride analytical determination techniques: A review. Sustainability, 13(13), 7061.CrossRef
Zurück zum Zitat Wadidi, N. A., Idris, A. A. A., Woldemicheal, S. K., & El Haj, S. I. A. (2022). Properties of natural adsorbent prepared from two local Sudanese agricultural wastes mango seeds and date’s stones and their uses in removal of contamination from fluid nutrient. Bulletin of the National Research Centre, 46(1), 1–7. Wadidi, N. A., Idris, A. A. A., Woldemicheal, S. K., & El Haj, S. I. A. (2022). Properties of natural adsorbent prepared from two local Sudanese agricultural wastes mango seeds and date’s stones and their uses in removal of contamination from fluid nutrient. Bulletin of the National Research Centre, 46(1), 1–7.
Zurück zum Zitat Waghmare, S. S., & Arfin, T. (2015). Fluoride removal from water by various techniques. International Journal of Innovative Science Engineering and Technology, 2(3), 560–571. Waghmare, S. S., & Arfin, T. (2015). Fluoride removal from water by various techniques. International Journal of Innovative Science Engineering and Technology, 2(3), 560–571.
Zurück zum Zitat Wan, K., Huang, L., Yan, J., Ma, B., Huang, X., Luo, Z., Zhang, H., & Xiao, T. (2021). Removal of fluoride from industrial wastewater by using different adsorbents: A review. Science of the Total Environment, 773, 145535.ADSPubMedCrossRef Wan, K., Huang, L., Yan, J., Ma, B., Huang, X., Luo, Z., Zhang, H., & Xiao, T. (2021). Removal of fluoride from industrial wastewater by using different adsorbents: A review. Science of the Total Environment, 773, 145535.ADSPubMedCrossRef
Zurück zum Zitat Wan, S., Lin, J., Tao, W., Yang, Y., Li, Y., & He, F. (2019). Enhanced fluoride removal from water by nanoporous biochar-supported magnesium oxide. Industrial & Engineering Chemistry Research, 58(23), 9988–9996.CrossRef Wan, S., Lin, J., Tao, W., Yang, Y., Li, Y., & He, F. (2019). Enhanced fluoride removal from water by nanoporous biochar-supported magnesium oxide. Industrial & Engineering Chemistry Research, 58(23), 9988–9996.CrossRef
Zurück zum Zitat Wang, Y., Zhang, Y., Li, S. Y., Zhong, W. H., & Wei, W. (2018). Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. Journal of Molecular Liquid, 268, 658–666.CrossRef Wang, Y., Zhang, Y., Li, S. Y., Zhong, W. H., & Wei, W. (2018). Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. Journal of Molecular Liquid, 268, 658–666.CrossRef
Zurück zum Zitat Xu, L., & Wang, J. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186(1), 256–264.PubMedCrossRef Xu, L., & Wang, J. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186(1), 256–264.PubMedCrossRef
Zurück zum Zitat Zhang, C., Li, Y., Wang, T. J., Jiang, Y., & Fok, J. (2017). Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Applied Surface Science, 425, 272–281.ADSCrossRef Zhang, C., Li, Y., Wang, T. J., Jiang, Y., & Fok, J. (2017). Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Applied Surface Science, 425, 272–281.ADSCrossRef
Zurück zum Zitat Zhang, H., Wang, J., Zhang, X., Li, B., & Cheng, X. (2019). Enhanced removal of lomefloxacin based on peroxymonosulfate activation by Co3O4/δ-FeOOH composite. Chemical Engineering Journal, 369, 834–844.CrossRef Zhang, H., Wang, J., Zhang, X., Li, B., & Cheng, X. (2019). Enhanced removal of lomefloxacin based on peroxymonosulfate activation by Co3O4/δ-FeOOH composite. Chemical Engineering Journal, 369, 834–844.CrossRef
Zurück zum Zitat Zhao, J., Lu, Z., He, X., Zhang, X., Li, Q., Xia, T., Zhang, W., & Lu, C. (2017). Fabrication and characterization of highly porous Fe(OH)3@ cellulose hybrid fibers for effective removal of Congo red from contaminated wat201er. ACS Sustainable Chemistry & Engineering, 5(9), 7723–7732.CrossRef Zhao, J., Lu, Z., He, X., Zhang, X., Li, Q., Xia, T., Zhang, W., & Lu, C. (2017). Fabrication and characterization of highly porous Fe(OH)3@ cellulose hybrid fibers for effective removal of Congo red from contaminated wat201er. ACS Sustainable Chemistry & Engineering, 5(9), 7723–7732.CrossRef
Metadaten
Titel
Adsorptive Removal of Fluoride from Water Using Iron Oxide-Hydrogen Nanoparticles
verfasst von
Archana Kushwaha
Zeenat Arif
Bineeta Singh
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-38845-3_8