Skip to main content

2023 | OriginalPaper | Buchkapitel

7. Adsorptive Removal of Pollutants Using Graphene-based Materials for Water Purification

verfasst von : Lesego Tabea Temane, Jonathan Tersur Orasugh, Suprakas Sinha Ray

Erschienen in: Two-Dimensional Materials for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Adsorption methods have been employed for pollution control as well as cleanup all around the world. Composite materials have been the most suitable candidates for high-standard adsorption systems. So also, when merged with graphene or its derivatives, they become very effective candidates for adsorbing environmental contaminants found in water. The combined effect of graphene oxide, as well as its engineered material nanostructures (hybrids, composites, etc.), has also been shown to significantly contribute to the adsorption of heavy metals, toxic organic chemicals (colorants, diverse volatile organic compounds (VOCs), pesticides, chemical fertilizer, drugs), as well as other suspended particles pollutants of water, particularly industrial effluents. The broad surfaces of graphene oxide's derivatives and nanocomposites are bonded with a variety of reactionary oxygen-containing functionalities, giving them exceptional stability and adsorption efficiency in an aqueous environment. This also enables them to be recycled for numerous adsorption–desorption cycles. The present chapter discusses all of these graphene-based materials, their adsorption phenomena, and their application to water to cleanse and purify it.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Ali et al., Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)CrossRef I. Ali et al., Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)CrossRef
2.
Zurück zum Zitat M.D.F. Hossain, N. Akther, Y. Zhou, Recent advancements in graphene adsorbents for wastewater treatment: current status and challenges. Chinese Chem. Lett. 31(10), 2525–2538 (2020)CrossRef M.D.F. Hossain, N. Akther, Y. Zhou, Recent advancements in graphene adsorbents for wastewater treatment: current status and challenges. Chinese Chem. Lett. 31(10), 2525–2538 (2020)CrossRef
3.
Zurück zum Zitat N. Khatri, S. Tyagi, Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8(1), 23–39 (2015)CrossRef N. Khatri, S. Tyagi, Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8(1), 23–39 (2015)CrossRef
4.
Zurück zum Zitat V. Masindi, K.L. Muedi, Environmental contamination by heavy metals. Heavy Metals 10, 115–132 (2018) V. Masindi, K.L. Muedi, Environmental contamination by heavy metals. Heavy Metals 10, 115–132 (2018)
5.
Zurück zum Zitat F.E. Titchou et al., Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Proc. Proc. Intensific. 169, 108631 (2021)CrossRef F.E. Titchou et al., Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Proc. Proc. Intensific. 169, 108631 (2021)CrossRef
6.
Zurück zum Zitat R.R.L. Vidal, J.S. Moraes, Removal of organic pollutants from wastewater using chitosan: a literature review. Int. J. Environ. Sci. Technol. 16(3), 1741–1754 (2019)CrossRef R.R.L. Vidal, J.S. Moraes, Removal of organic pollutants from wastewater using chitosan: a literature review. Int. J. Environ. Sci. Technol. 16(3), 1741–1754 (2019)CrossRef
7.
Zurück zum Zitat J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. (Springer, 2022), pp.1–53 J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. (Springer, 2022), pp.1–53
8.
Zurück zum Zitat Z.-H. Huang et al., Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27(12), 7558–7562 (2011)CrossRef Z.-H. Huang et al., Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27(12), 7558–7562 (2011)CrossRef
9.
Zurück zum Zitat J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42(3), 251–325 (2012)CrossRef J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42(3), 251–325 (2012)CrossRef
10.
Zurück zum Zitat G. Ciardelli, L. Corsi, M. Marcucci, Membrane separation for wastewater reuse in the textile industry. Resour. Conserv. Recycl. 31(2), 189–197 (2001)CrossRef G. Ciardelli, L. Corsi, M. Marcucci, Membrane separation for wastewater reuse in the textile industry. Resour. Conserv. Recycl. 31(2), 189–197 (2001)CrossRef
11.
Zurück zum Zitat A. Bodalo-Santoyo et al., Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155(2), 101–108 (2003)CrossRef A. Bodalo-Santoyo et al., Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155(2), 101–108 (2003)CrossRef
12.
Zurück zum Zitat S.K. Nataraj, K.M. Hosamani, T.M. Aminabhavi, Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res. 40(12), 2349–2356 (2006)CrossRef S.K. Nataraj, K.M. Hosamani, T.M. Aminabhavi, Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res. 40(12), 2349–2356 (2006)CrossRef
13.
Zurück zum Zitat T.R. Harper, N.W. Kingham, Removal of arsenic from wastewater using chemical precipitation methods. Water Environ. Res. 64(3), 200–203 (1992)CrossRef T.R. Harper, N.W. Kingham, Removal of arsenic from wastewater using chemical precipitation methods. Water Environ. Res. 64(3), 200–203 (1992)CrossRef
14.
Zurück zum Zitat R. Bochenek, R. Sitarz, D. Antos, Design of continuous ion exchange process for the wastewater treatment. Chem. Eng. Sci. 66(23), 6209–6219 (2011)CrossRef R. Bochenek, R. Sitarz, D. Antos, Design of continuous ion exchange process for the wastewater treatment. Chem. Eng. Sci. 66(23), 6209–6219 (2011)CrossRef
15.
Zurück zum Zitat E. Ofir et al., Boron removal from seawater by electro-chemical treatment as part of water desalination. Desalin. Water Treat. 31(1–3), 102–106 (2011)CrossRef E. Ofir et al., Boron removal from seawater by electro-chemical treatment as part of water desalination. Desalin. Water Treat. 31(1–3), 102–106 (2011)CrossRef
16.
Zurück zum Zitat T. Pickett, J. Sonstegard, B. Bonkoski, Using biology to treat selenium: biologically treating scrubber wastewater can be an attractive alternative to physical-chemical treatment. Power Eng. 110(11), 140–143 (2006) T. Pickett, J. Sonstegard, B. Bonkoski, Using biology to treat selenium: biologically treating scrubber wastewater can be an attractive alternative to physical-chemical treatment. Power Eng. 110(11), 140–143 (2006)
17.
Zurück zum Zitat H. Liu, H. Qiu, Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: a review. Chem. Eng. J. 393, 124691 (2020)CrossRef H. Liu, H. Qiu, Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: a review. Chem. Eng. J. 393, 124691 (2020)CrossRef
18.
Zurück zum Zitat M.S. Ali, J.T. Orasugh, D. Chattopadhyay, Bacillus subtilis-based biofilms, in Application of Biofilms in Applied Microbiology, ed. by M.P. Shah, (Elsevier, Elsevier, 2022) M.S. Ali, J.T. Orasugh, D. Chattopadhyay, Bacillus subtilis-based biofilms, in Application of Biofilms in Applied Microbiology, ed. by M.P. Shah, (Elsevier, Elsevier, 2022)
19.
Zurück zum Zitat M.M.-A. Aslam et al., Functionalized carbon nanotubes (Cnts) for water and wastewater treatment: preparation to application. Sustainability 13(10), 5717 (2021)CrossRef M.M.-A. Aslam et al., Functionalized carbon nanotubes (Cnts) for water and wastewater treatment: preparation to application. Sustainability 13(10), 5717 (2021)CrossRef
20.
Zurück zum Zitat M. Kumari et al., Transformation of solid plastic waste to activated carbon fibres for wastewater treatment. Chemosphere 294, 133692 (2022)CrossRef M. Kumari et al., Transformation of solid plastic waste to activated carbon fibres for wastewater treatment. Chemosphere 294, 133692 (2022)CrossRef
21.
Zurück zum Zitat H. Es-sahbany et al., Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima-Morocco region). Mater. Today Proc. 45, 7299–7305 (2021)CrossRef H. Es-sahbany et al., Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima-Morocco region). Mater. Today Proc. 45, 7299–7305 (2021)CrossRef
22.
Zurück zum Zitat A. Sarı, T.A. Saleh, M. Tuzen, Development and characterization of polymer-modified vermiculite composite as novel highly-efficient adsorbent for water treatment. Surfaces Interfaces 27, 101504 (2021)CrossRef A. Sarı, T.A. Saleh, M. Tuzen, Development and characterization of polymer-modified vermiculite composite as novel highly-efficient adsorbent for water treatment. Surfaces Interfaces 27, 101504 (2021)CrossRef
23.
Zurück zum Zitat A.A. Al-Gheethi et al., Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: a review. Chemosphere 287, 132080 (2022)CrossRef A.A. Al-Gheethi et al., Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: a review. Chemosphere 287, 132080 (2022)CrossRef
24.
Zurück zum Zitat I. Anastopoulos et al., Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water. J. Mol. Liq. 342, 117540 (2021)CrossRef I. Anastopoulos et al., Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water. J. Mol. Liq. 342, 117540 (2021)CrossRef
25.
Zurück zum Zitat Z.-D. Peng et al., Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci. Total Environ. 772, 145355 (2021)CrossRef Z.-D. Peng et al., Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci. Total Environ. 772, 145355 (2021)CrossRef
26.
Zurück zum Zitat T. Sattar, Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 377(2), 1–45 (2019)MathSciNet T. Sattar, Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 377(2), 1–45 (2019)MathSciNet
27.
Zurück zum Zitat H. Shinohara, A. Tiwari, Graphene: An Introduction to The Fundamentals and Industrial Applications. (John Wiley & Sons, 2015) H. Shinohara, A. Tiwari, Graphene: An Introduction to The Fundamentals and Industrial Applications. (John Wiley & Sons, 2015)
28.
Zurück zum Zitat D.P. DiVincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29(4), 1685 (1984)CrossRef D.P. DiVincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29(4), 1685 (1984)CrossRef
29.
Zurück zum Zitat A. Geim, Many pioneers in graphene discovery. APS News 19(1), 4 (2010) A. Geim, Many pioneers in graphene discovery. APS News 19(1), 4 (2010)
30.
Zurück zum Zitat Y. Huang et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 1–9 (2020)MathSciNet Y. Huang et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 1–9 (2020)MathSciNet
31.
Zurück zum Zitat G. Borand, N. Akçamlı, D. Uzunsoy, Structural characterization of graphene nanostructures produced via arc discharge method. Ceram. Int. 47(6), 8044–8052 (2021)CrossRef G. Borand, N. Akçamlı, D. Uzunsoy, Structural characterization of graphene nanostructures produced via arc discharge method. Ceram. Int. 47(6), 8044–8052 (2021)CrossRef
32.
Zurück zum Zitat A. Kaur, J. Kaur, R.C. Singh, Tailor made exfoliated reduced graphene oxide nanosheets based on oxidative-exfoliation approach. Fullerenes Nanotubes Carbon Nanostruct. 26(1), 1–11 (2018)CrossRef A. Kaur, J. Kaur, R.C. Singh, Tailor made exfoliated reduced graphene oxide nanosheets based on oxidative-exfoliation approach. Fullerenes Nanotubes Carbon Nanostruct. 26(1), 1–11 (2018)CrossRef
33.
Zurück zum Zitat Y. Xu et al., Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials 8(11), 942 (2018)CrossRef Y. Xu et al., Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials 8(11), 942 (2018)CrossRef
34.
Zurück zum Zitat A.A. Silva et al., Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci. 446, 201–208 (2018)CrossRef A.A. Silva et al., Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci. 446, 201–208 (2018)CrossRef
35.
Zurück zum Zitat X.J. Lee et al., Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98, 163–180 (2019)CrossRef X.J. Lee et al., Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98, 163–180 (2019)CrossRef
36.
Zurück zum Zitat M. Saeed et al., Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25(17), 3856 (2020)CrossRef M. Saeed et al., Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25(17), 3856 (2020)CrossRef
37.
Zurück zum Zitat G. Li et al., Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chem. Soc. Rev. 47(16), 6073–6100 (2018)CrossRef G. Li et al., Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chem. Soc. Rev. 47(16), 6073–6100 (2018)CrossRef
38.
Zurück zum Zitat Y. Sun, J. Zhang, Strategies for scalable gas-phase preparation of free-standing graphene. CCS Chem. 3(4), 1058–1077 (2021)CrossRef Y. Sun, J. Zhang, Strategies for scalable gas-phase preparation of free-standing graphene. CCS Chem. 3(4), 1058–1077 (2021)CrossRef
39.
Zurück zum Zitat Y. Yang et al., Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci. Rep. 5(1), 1–7 (2015) Y. Yang et al., Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci. Rep. 5(1), 1–7 (2015)
40.
Zurück zum Zitat V. Singh et al., Graphene based materials: past, present and future. Prog. Mater Sci. 56(8), 1178–1271 (2011)CrossRef V. Singh et al., Graphene based materials: past, present and future. Prog. Mater Sci. 56(8), 1178–1271 (2011)CrossRef
41.
Zurück zum Zitat A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)CrossRef
42.
Zurück zum Zitat B. Liang et al., Organic salt-assisted liquid-phase shear exfoliation of expanded graphite into graphene nanosheets. J. Materiom. 7(6), 1181–1189 (2021)CrossRef B. Liang et al., Organic salt-assisted liquid-phase shear exfoliation of expanded graphite into graphene nanosheets. J. Materiom. 7(6), 1181–1189 (2021)CrossRef
43.
Zurück zum Zitat N. Kumar et al., Top-down synthesis of graphene: a comprehensive review. FlatChem 27, 100224 (2021)CrossRef N. Kumar et al., Top-down synthesis of graphene: a comprehensive review. FlatChem 27, 100224 (2021)CrossRef
44.
Zurück zum Zitat M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef
45.
Zurück zum Zitat T.M.D. Alharbi et al., Shear stress mediated scrolling of graphene oxide. Carbon 137, 419–424 (2018)CrossRef T.M.D. Alharbi et al., Shear stress mediated scrolling of graphene oxide. Carbon 137, 419–424 (2018)CrossRef
46.
Zurück zum Zitat L. Yasmin et al., Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Sci. Rep. 3(1), 1–6 (2013)CrossRef L. Yasmin et al., Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Sci. Rep. 3(1), 1–6 (2013)CrossRef
47.
Zurück zum Zitat X. Chen, J.F. Dobson, C.L. Raston, Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 48(31), 3703–3705 (2012)CrossRef X. Chen, J.F. Dobson, C.L. Raston, Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 48(31), 3703–3705 (2012)CrossRef
48.
Zurück zum Zitat M.H. Wahid et al., Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem. 15(3), 650–655 (2013)CrossRef M.H. Wahid et al., Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem. 15(3), 650–655 (2013)CrossRef
49.
Zurück zum Zitat T.S. Tran et al., High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow. RSC Adv. 6(15), 12003–12008 (2016)CrossRef T.S. Tran et al., High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow. RSC Adv. 6(15), 12003–12008 (2016)CrossRef
50.
Zurück zum Zitat M.G. Sumdani et al., Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. J. Nanopart. Res. 23(11), 1–35 (2021)CrossRef M.G. Sumdani et al., Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. J. Nanopart. Res. 23(11), 1–35 (2021)CrossRef
51.
Zurück zum Zitat K.R. Paton et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)CrossRef K.R. Paton et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)CrossRef
52.
Zurück zum Zitat Z. Zhang et al., Efficient production of high-quality few-layer graphene using a simple hydrodynamic-assisted exfoliation method. Nanoscale Res Lett 13(1), 416 (2018)CrossRef Z. Zhang et al., Efficient production of high-quality few-layer graphene using a simple hydrodynamic-assisted exfoliation method. Nanoscale Res Lett 13(1), 416 (2018)CrossRef
53.
Zurück zum Zitat W. Choi, J.-W. Lee, Graphene: synthesis and applications. (CRC press, 2011) W. Choi, J.-W. Lee, Graphene: synthesis and applications. (CRC press, 2011)
54.
Zurück zum Zitat L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299(5611), 1361 (2003)CrossRef L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299(5611), 1361 (2003)CrossRef
55.
Zurück zum Zitat Z. Ereš, S. Hrabar, Low-cost synthesis of high-quality graphene in do-it-yourself CVD reactor. Automatika 59(3–4), 254–260 (2018)CrossRef Z. Ereš, S. Hrabar, Low-cost synthesis of high-quality graphene in do-it-yourself CVD reactor. Automatika 59(3–4), 254–260 (2018)CrossRef
56.
Zurück zum Zitat Z. Zhang et al., Top-down bottom-up graphene synthesis. Nano Futures 3(4), 042003 (2019)CrossRef Z. Zhang et al., Top-down bottom-up graphene synthesis. Nano Futures 3(4), 042003 (2019)CrossRef
57.
Zurück zum Zitat A. Moosa, M. Abed, Graphene preparation and graphite exfoliation. Turk. J. Chem. 45(3), 493–519 (2021)CrossRef A. Moosa, M. Abed, Graphene preparation and graphite exfoliation. Turk. J. Chem. 45(3), 493–519 (2021)CrossRef
58.
Zurück zum Zitat Y. Lee et al., Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10(2), 490–493 (2010)CrossRef Y. Lee et al., Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10(2), 490–493 (2010)CrossRef
59.
Zurück zum Zitat X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef
60.
Zurück zum Zitat X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–4272 (2009)CrossRef X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–4272 (2009)CrossRef
61.
Zurück zum Zitat S. Jia-Tao et al., Effect of strain on geometric and electronic structures of graphene on a Ru (0001) surface. Chin. Phys. B 18(7), 3008 (2009)CrossRef S. Jia-Tao et al., Effect of strain on geometric and electronic structures of graphene on a Ru (0001) surface. Chin. Phys. B 18(7), 3008 (2009)CrossRef
62.
Zurück zum Zitat L. Gao et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3(1), 1–7 (2012)MathSciNetCrossRef L. Gao et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3(1), 1–7 (2012)MathSciNetCrossRef
63.
Zurück zum Zitat D.Y. Usachov et al., Epitaxial B-graphene: large-scale growth and atomic structure. ACS Nano 9(7), 7314–7322 (2015)CrossRef D.Y. Usachov et al., Epitaxial B-graphene: large-scale growth and atomic structure. ACS Nano 9(7), 7314–7322 (2015)CrossRef
64.
Zurück zum Zitat B.-J. Park et al., Defect-free graphene synthesized directly at 150 C via chemical vapor deposition with no transfer. ACS Nano 12(2), 2008–2016 (2018)CrossRef B.-J. Park et al., Defect-free graphene synthesized directly at 150 C via chemical vapor deposition with no transfer. ACS Nano 12(2), 2008–2016 (2018)CrossRef
65.
Zurück zum Zitat Y. Yao, C.-P. Wong, Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition. Carbon 50(14), 5203–5209 (2012)CrossRef Y. Yao, C.-P. Wong, Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition. Carbon 50(14), 5203–5209 (2012)CrossRef
66.
Zurück zum Zitat C.-M. Seah, S.-P. Chai, A.R. Mohamed, Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70, 1–21 (2014)CrossRef C.-M. Seah, S.-P. Chai, A.R. Mohamed, Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70, 1–21 (2014)CrossRef
67.
Zurück zum Zitat N.G. Shang et al., Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Func. Mater. 18(21), 3506–3514 (2008)CrossRef N.G. Shang et al., Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Func. Mater. 18(21), 3506–3514 (2008)CrossRef
68.
Zurück zum Zitat A.N. Obraztsov et al., DC discharge plasma studies for nanostructured carbon CVD. Diam. Relat. Mater. 12(3–7), 917–920 (2003)CrossRef A.N. Obraztsov et al., DC discharge plasma studies for nanostructured carbon CVD. Diam. Relat. Mater. 12(3–7), 917–920 (2003)CrossRef
69.
Zurück zum Zitat C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)CrossRef C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)CrossRef
70.
Zurück zum Zitat M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4(1), 30–33 (2009)CrossRef M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4(1), 30–33 (2009)CrossRef
71.
Zurück zum Zitat H. Hibino, H. Kageshima, M. Nagase, Graphene growth on silicon carbide. NTT Technical Review (Web). 8(8) (2010) H. Hibino, H. Kageshima, M. Nagase, Graphene growth on silicon carbide. NTT Technical Review (Web). 8(8) (2010)
72.
Zurück zum Zitat Z.-Y. Juang et al., Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47(8), 2026–2031 (2009)CrossRef Z.-Y. Juang et al., Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47(8), 2026–2031 (2009)CrossRef
73.
Zurück zum Zitat Y. Pan et al., Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 21(27), 2777–2780 (2009)CrossRef Y. Pan et al., Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 21(27), 2777–2780 (2009)CrossRef
74.
Zurück zum Zitat Z. Chen et al., Graphene nano-ribbon electronics. Phys. E 40(2), 228–232 (2007)CrossRef Z. Chen et al., Graphene nano-ribbon electronics. Phys. E 40(2), 228–232 (2007)CrossRef
75.
Zurück zum Zitat D.V. Kosynkin et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)CrossRef D.V. Kosynkin et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)CrossRef
76.
Zurück zum Zitat L. Jiao et al., Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009)CrossRef L. Jiao et al., Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009)CrossRef
77.
Zurück zum Zitat A.G. Cano-Marquez et al., Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9(4), 1527–1533 (2009)CrossRef A.G. Cano-Marquez et al., Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9(4), 1527–1533 (2009)CrossRef
78.
Zurück zum Zitat J. Liu et al., Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Adv. Mater. 26(5), 786–790 (2014)CrossRef J. Liu et al., Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Adv. Mater. 26(5), 786–790 (2014)CrossRef
79.
Zurück zum Zitat W.E. Mahmoud, F.S. Al-Hazmi, G.H. Al-Harbi, Wall by wall controllable unzipping of MWCNTs via intercalation with oxalic acid to produce multilayers graphene oxide ribbon. Chem. Eng. J. 281, 192–198 (2015)CrossRef W.E. Mahmoud, F.S. Al-Hazmi, G.H. Al-Harbi, Wall by wall controllable unzipping of MWCNTs via intercalation with oxalic acid to produce multilayers graphene oxide ribbon. Chem. Eng. J. 281, 192–198 (2015)CrossRef
80.
Zurück zum Zitat J.T. Orasugh et al., Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859CrossRef J.T. Orasugh et al., Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859CrossRef
81.
Zurück zum Zitat S. Kim et al., An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 11(38), 5041–5046 (2015)CrossRef S. Kim et al., An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 11(38), 5041–5046 (2015)CrossRef
82.
Zurück zum Zitat K.S. Subrahmanyam et al., Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)CrossRef K.S. Subrahmanyam et al., Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)CrossRef
83.
Zurück zum Zitat C.E.E. Rao, A.E. Sood, Graphene: the new two‐dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42):7752–7777 C.E.E. Rao, A.E. Sood, Graphene: the new two‐dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42):7752–7777
84.
Zurück zum Zitat Z. Wang et al., Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17), 175602 (2010)CrossRef Z. Wang et al., Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17), 175602 (2010)CrossRef
85.
Zurück zum Zitat T. Szabó et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18(11), 2740–2749 (2006)CrossRef T. Szabó et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18(11), 2740–2749 (2006)CrossRef
86.
Zurück zum Zitat A. Lerf et al., Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)CrossRef A. Lerf et al., Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)CrossRef
87.
Zurück zum Zitat H. He et al., Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100(51), 19954–19958 (1996)CrossRef H. He et al., Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100(51), 19954–19958 (1996)CrossRef
88.
Zurück zum Zitat K. Erickson et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22(40), 4467–4472 (2010)CrossRef K. Erickson et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22(40), 4467–4472 (2010)CrossRef
89.
Zurück zum Zitat A. Dimiev et al., Pristine graphite oxide. J. Am. Chem. Soc. 134(5), 2815–2822 (2012)CrossRef A. Dimiev et al., Pristine graphite oxide. J. Am. Chem. Soc. 134(5), 2815–2822 (2012)CrossRef
90.
Zurück zum Zitat S. Eigler, A. Hirsch, Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 53(30), 7720–7738 (2014)CrossRef S. Eigler, A. Hirsch, Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 53(30), 7720–7738 (2014)CrossRef
91.
Zurück zum Zitat J.P. Rourke et al., The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50(14), 3173–3177 (2011)CrossRef J.P. Rourke et al., The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50(14), 3173–3177 (2011)CrossRef
92.
Zurück zum Zitat A.T. Dideikin, A.Y. Vul, Graphene oxide and derivatives: the place in graphene family. Front. Phys. 6, 149 (2019)CrossRef A.T. Dideikin, A.Y. Vul, Graphene oxide and derivatives: the place in graphene family. Front. Phys. 6, 149 (2019)CrossRef
93.
Zurück zum Zitat L. Sun, Structure and synthesis of graphene oxide. Chin. J. Chem. Eng. 27(10), 2251–2260 (2019)CrossRef L. Sun, Structure and synthesis of graphene oxide. Chin. J. Chem. Eng. 27(10), 2251–2260 (2019)CrossRef
94.
Zurück zum Zitat C. Gómez-Navarro et al., Atomic structure of reduced graphene oxide. Nano Lett. 10(4), 1144–1148 (2010)CrossRef C. Gómez-Navarro et al., Atomic structure of reduced graphene oxide. Nano Lett. 10(4), 1144–1148 (2010)CrossRef
95.
Zurück zum Zitat D.Y. Kornilov, S.P. Gubin, Graphene oxide: structure, properties, synthesis, and reduction (a review). Russ. J. Inorg. Chem. 65(13), 1965–1976 (2020)CrossRef D.Y. Kornilov, S.P. Gubin, Graphene oxide: structure, properties, synthesis, and reduction (a review). Russ. J. Inorg. Chem. 65(13), 1965–1976 (2020)CrossRef
96.
Zurück zum Zitat N. Vats et al., Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam deposition. Nanoscale 10(10), 4952–4961 (2018)CrossRef N. Vats et al., Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam deposition. Nanoscale 10(10), 4952–4961 (2018)CrossRef
97.
Zurück zum Zitat Y. Gao et al., Revealing the role of oxygen-containing functional groups on graphene oxide for the highly efficient adsorption of thorium ions. J. Hazard. Mater. 436, 129148 (2022)CrossRef Y. Gao et al., Revealing the role of oxygen-containing functional groups on graphene oxide for the highly efficient adsorption of thorium ions. J. Hazard. Mater. 436, 129148 (2022)CrossRef
98.
Zurück zum Zitat S.H. Dave et al., Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10(8), 7515–7522 (2016)CrossRef S.H. Dave et al., Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10(8), 7515–7522 (2016)CrossRef
99.
Zurück zum Zitat S. Sadhukhan et al., Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 247, 122906 (2020)CrossRef S. Sadhukhan et al., Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 247, 122906 (2020)CrossRef
100.
Zurück zum Zitat D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012)CrossRef D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012)CrossRef
101.
Zurück zum Zitat Q. Lian et al., Enhanced adsorption of resorcinol onto phosphate functionalized graphene oxide synthesized via Arbuzov Reaction: a proposed mechanism of hydrogen bonding and π-π interactions. Chemosphere 280, 130730 (2021)CrossRef Q. Lian et al., Enhanced adsorption of resorcinol onto phosphate functionalized graphene oxide synthesized via Arbuzov Reaction: a proposed mechanism of hydrogen bonding and π-π interactions. Chemosphere 280, 130730 (2021)CrossRef
102.
Zurück zum Zitat W. Gao et al., New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009)CrossRef W. Gao et al., New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009)CrossRef
103.
Zurück zum Zitat T. Nakajima, Y. Matsuo, Formation process and structure of graphite oxide. Carbon 32(3), 469–475 (1994)CrossRef T. Nakajima, Y. Matsuo, Formation process and structure of graphite oxide. Carbon 32(3), 469–475 (1994)CrossRef
104.
Zurück zum Zitat G. Ruess, Über das graphitoxyhydroxyd (graphitoxyd). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 76(3), 381–417 (1947)CrossRef G. Ruess, Über das graphitoxyhydroxyd (graphitoxyd). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 76(3), 381–417 (1947)CrossRef
105.
Zurück zum Zitat W. Scholz, H.P. Boehm, Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids. Zeitschrift für anorganische und allgemeine Chemie. 369(3–6), 327–340 (1969) W. Scholz, H.P. Boehm, Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids. Zeitschrift für anorganische und allgemeine Chemie. 369(3–6), 327–340 (1969)
106.
Zurück zum Zitat W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010)CrossRef W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010)CrossRef
107.
Zurück zum Zitat S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef
108.
Zurück zum Zitat K.A.I. Yan et al., Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46(10), 2263–2274 (2013)CrossRef K.A.I. Yan et al., Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46(10), 2263–2274 (2013)CrossRef
109.
Zurück zum Zitat H. Wang et al., Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRef H. Wang et al., Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)CrossRef
110.
Zurück zum Zitat M.K. Rabchinskii et al., Nanoscale perforation of graphene oxide during photoreduction process in the argon atmosphere. J. Phys. Chem. C 120(49), 28261–28269 (2016)CrossRef M.K. Rabchinskii et al., Nanoscale perforation of graphene oxide during photoreduction process in the argon atmosphere. J. Phys. Chem. C 120(49), 28261–28269 (2016)CrossRef
111.
Zurück zum Zitat J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020)CrossRef J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020)CrossRef
112.
Zurück zum Zitat I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916) I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)
113.
Zurück zum Zitat Y. Liu, J. Wang, Fundamentals and applications of biosorption isotherms, kinetics and thermodynamics. (Nova Science Publishers, 2009) Y. Liu, J. Wang, Fundamentals and applications of biosorption isotherms, kinetics and thermodynamics. (Nova Science Publishers, 2009)
114.
Zurück zum Zitat R. Sips, On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)CrossRef R. Sips, On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)CrossRef
115.
Zurück zum Zitat H. Freundlich, Over the adsorption in solution. J. Phys. chem 57(385471), 1100–1107 (1906) H. Freundlich, Over the adsorption in solution. J. Phys. chem 57(385471), 1100–1107 (1906)
116.
Zurück zum Zitat O. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024–1024 (1959)CrossRef O. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024–1024 (1959)CrossRef
117.
Zurück zum Zitat A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid Interface Sci. 194(1), 154–165 (1997)CrossRef A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid Interface Sci. 194(1), 154–165 (1997)CrossRef
118.
Zurück zum Zitat J. Toth, A multicomponent isotherm for liquid adsorption. Acta Chim. Acad. Sci. Hung 69, 311–322 (1971) J. Toth, A multicomponent isotherm for liquid adsorption. Acta Chim. Acad. Sci. Hung 69, 311–322 (1971)
119.
Zurück zum Zitat C.J. Radke, J.M. Prausnitz, Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind. Eng. Chem. Fundam. 11(4), 445–451 (1972)CrossRef C.J. Radke, J.M. Prausnitz, Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind. Eng. Chem. Fundam. 11(4), 445–451 (1972)CrossRef
120.
Zurück zum Zitat M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)CrossRef M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)CrossRef
121.
Zurück zum Zitat M.M. Majd, et al., Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Sci. Total Environ. 151334 (2021) M.M. Majd, et al., Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Sci. Total Environ. 151334 (2021)
122.
Zurück zum Zitat T. Grchev et al., Adsorption of polyacrylamide on gold and iron from acidic aqueous solutions. Electrochim. Acta 36(8), 1315–1323 (1991)CrossRef T. Grchev et al., Adsorption of polyacrylamide on gold and iron from acidic aqueous solutions. Electrochim. Acta 36(8), 1315–1323 (1991)CrossRef
123.
Zurück zum Zitat P.J. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10(1), 51–61 (1942)CrossRef P.J. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10(1), 51–61 (1942)CrossRef
124.
Zurück zum Zitat M.L. Huggins, Some properties of solutions of long-chain compounds. J. Phys. Chem. 46(1), 151–158 (1942)CrossRef M.L. Huggins, Some properties of solutions of long-chain compounds. J. Phys. Chem. 46(1), 151–158 (1942)CrossRef
125.
Zurück zum Zitat M. Kaisheva, G. Saraivanov, A. Anastopoulos, Adsorption studies of hexadecyltributylphosphonium bromide at the mercury/solution interface through differential capacity measurements. Langmuir 7(10), 2380–2384 (1991)CrossRef M. Kaisheva, G. Saraivanov, A. Anastopoulos, Adsorption studies of hexadecyltributylphosphonium bromide at the mercury/solution interface through differential capacity measurements. Langmuir 7(10), 2380–2384 (1991)CrossRef
126.
Zurück zum Zitat S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRef S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRef
127.
Zurück zum Zitat M.J. Temkin, V. Pyzhev, Recent Modifications to Langmuir Isotherms. (1940) M.J. Temkin, V. Pyzhev, Recent Modifications to Langmuir Isotherms. (1940)
128.
Zurück zum Zitat C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2—Theoretical models. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 73, 456–464 (1977) C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2—Theoretical models. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 73, 456–464 (1977)
129.
Zurück zum Zitat A. Bhattacharyya, et al., Design of an efficient and selective adsorbent of cationic dye through activated carbon–graphene oxide nanocomposite: study on mechanism and synergy. Mater. Chem. Phys. 260 (2021) A. Bhattacharyya, et al., Design of an efficient and selective adsorbent of cationic dye through activated carbon–graphene oxide nanocomposite: study on mechanism and synergy. Mater. Chem. Phys. 260 (2021)
130.
Zurück zum Zitat L. Abou Chacra et al., Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water. J. Environ. Chem. Eng. 6(2), 3018–3033 (2018)CrossRef L. Abou Chacra et al., Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water. J. Environ. Chem. Eng. 6(2), 3018–3033 (2018)CrossRef
131.
Zurück zum Zitat H. Adamu, P. Dubey, J.A. Anderson, Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chem. Eng. J. 284, 380–388 (2016)CrossRef H. Adamu, P. Dubey, J.A. Anderson, Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chem. Eng. J. 284, 380–388 (2016)CrossRef
132.
Zurück zum Zitat M.T. Al-Shemy, A. Al-Sayed, S. Dacrory, Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: kinetics and thermodynamics study. Sep. Purif. Technol. 290, 120825 (2022)CrossRef M.T. Al-Shemy, A. Al-Sayed, S. Dacrory, Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: kinetics and thermodynamics study. Sep. Purif. Technol. 290, 120825 (2022)CrossRef
133.
Zurück zum Zitat T.S. Anirudhan, J.R. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci. 490, 343–356 (2017)CrossRef T.S. Anirudhan, J.R. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci. 490, 343–356 (2017)CrossRef
134.
Zurück zum Zitat N.I.F. Aris et al., Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples. R. Soc. Open Sci. 7(3), 192050 (2020)CrossRef N.I.F. Aris et al., Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples. R. Soc. Open Sci. 7(3), 192050 (2020)CrossRef
135.
Zurück zum Zitat O. Bagoole et al., Functionalized three-dimensional graphene sponges for highly efficient crude and diesel oil adsorption. Environ. Sci. Pollut. Res. 25(23), 23091–23105 (2018)CrossRef O. Bagoole et al., Functionalized three-dimensional graphene sponges for highly efficient crude and diesel oil adsorption. Environ. Sci. Pollut. Res. 25(23), 23091–23105 (2018)CrossRef
136.
Zurück zum Zitat S. Bai et al., One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50(6), 2337–2346 (2012)CrossRef S. Bai et al., One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50(6), 2337–2346 (2012)CrossRef
137.
Zurück zum Zitat U. Baig, M. Faizan, M. Sajid, Effective removal of hazardous pollutants from water and deactivation of water-borne pathogens using multifunctional synthetic adsorbent materials: a review. J. Clean. Prod. 126735 (2021) U. Baig, M. Faizan, M. Sajid, Effective removal of hazardous pollutants from water and deactivation of water-borne pathogens using multifunctional synthetic adsorbent materials: a review. J. Clean. Prod. 126735 (2021)
138.
Zurück zum Zitat A. Bhattacharyya et al., Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye. Int. J. Biol. Macromol. 116, 1037–1048 (2018)CrossRef A. Bhattacharyya et al., Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye. Int. J. Biol. Macromol. 116, 1037–1048 (2018)CrossRef
139.
Zurück zum Zitat J. Chen et al., Direct reduction of graphene oxide/nanofibrillated cellulose composite film and its electrical conductivity research. Sci. Rep. 10(1), 3124 (2020)MathSciNetCrossRef J. Chen et al., Direct reduction of graphene oxide/nanofibrillated cellulose composite film and its electrical conductivity research. Sci. Rep. 10(1), 3124 (2020)MathSciNetCrossRef
140.
Zurück zum Zitat L. Chen et al., Removal of methylene blue from water by cellulose/graphene oxide fibres. J. Exp. Nanosci. 11(14), 1156–1170 (2016)CrossRef L. Chen et al., Removal of methylene blue from water by cellulose/graphene oxide fibres. J. Exp. Nanosci. 11(14), 1156–1170 (2016)CrossRef
141.
Zurück zum Zitat X. Chen, et al., Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials (Basel) 9(7) (2016) X. Chen, et al., Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials (Basel) 9(7) (2016)
142.
Zurück zum Zitat Z. Dong et al., Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J. Mater. Chem. A 2(14), 5034–5040 (2014)CrossRef Z. Dong et al., Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J. Mater. Chem. A 2(14), 5034–5040 (2014)CrossRef
143.
Zurück zum Zitat C. Gao et al., Preparation of reduced graphene oxide aerogel and its adsorption for Pb(II). ACS Omega 5(17), 9903–9911 (2020)CrossRef C. Gao et al., Preparation of reduced graphene oxide aerogel and its adsorption for Pb(II). ACS Omega 5(17), 9903–9911 (2020)CrossRef
144.
Zurück zum Zitat H. Gu, et al., Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 1–10 (2021) H. Gu, et al., Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 1–10 (2021)
145.
Zurück zum Zitat C.M.B. de Araujo et al., Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective removal of organics. Colloids Surf. A 639, 128357 (2022)CrossRef C.M.B. de Araujo et al., Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective removal of organics. Colloids Surf. A 639, 128357 (2022)CrossRef
146.
Zurück zum Zitat A.A. Adeyi et al., Simultaneous adsorption of malachite green and methylene blue dyes in a fixed-bed column using poly (acrylonitrile-co-acrylic acid) modified with thiourea. Molecules 25(11), 2650 (2020)CrossRef A.A. Adeyi et al., Simultaneous adsorption of malachite green and methylene blue dyes in a fixed-bed column using poly (acrylonitrile-co-acrylic acid) modified with thiourea. Molecules 25(11), 2650 (2020)CrossRef
147.
Zurück zum Zitat L. Chen et al., High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohyd. Polym. 155, 345–353 (2017)CrossRef L. Chen et al., High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohyd. Polym. 155, 345–353 (2017)CrossRef
148.
Zurück zum Zitat A. Zaman et al., Biopolymer-based nanocomposites for removal of hazardous dyes from water bodies, in Innovations in Environmental Biotechnology. (Springer, 2022), pp.759–783CrossRef A. Zaman et al., Biopolymer-based nanocomposites for removal of hazardous dyes from water bodies, in Innovations in Environmental Biotechnology. (Springer, 2022), pp.759–783CrossRef
149.
Zurück zum Zitat M. Adel et al., Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: a critical review. Environ. Nanotechnol. Monitor. Manag. 18, 100719 (2022)CrossRef M. Adel et al., Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: a critical review. Environ. Nanotechnol. Monitor. Manag. 18, 100719 (2022)CrossRef
150.
Zurück zum Zitat Y. Yoon et al., Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Sep. Purif. Technol. 178, 40–48 (2017)CrossRef Y. Yoon et al., Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Sep. Purif. Technol. 178, 40–48 (2017)CrossRef
151.
Zurück zum Zitat H. Zhang et al., Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@ GO/MnOx) and its application for removing of Cu2+ ions from aqueous solution. Nanotechnology 29(13), 135706 (2018)CrossRef H. Zhang et al., Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@ GO/MnOx) and its application for removing of Cu2+ ions from aqueous solution. Nanotechnology 29(13), 135706 (2018)CrossRef
152.
Zurück zum Zitat C. Bulin et al., Magnetic graphene oxide nanocomposite: one-pot preparation, adsorption performance and mechanism for aqueous Mn (II) and Zn (II). J. Phys. Chem. Solids 156, 110130 (2021)CrossRef C. Bulin et al., Magnetic graphene oxide nanocomposite: one-pot preparation, adsorption performance and mechanism for aqueous Mn (II) and Zn (II). J. Phys. Chem. Solids 156, 110130 (2021)CrossRef
153.
Zurück zum Zitat A. Zaman et al., Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohyd. Polym. 246, 116661 (2020)CrossRef A. Zaman et al., Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohyd. Polym. 246, 116661 (2020)CrossRef
154.
Zurück zum Zitat P. Banerjee et al., Application of graphene oxide nanoplatelets for adsorption of ibuprofen from aqueous solutions: evaluation of process kinetics and thermodynamics. Process Saf. Environ. Prot. 101, 45–53 (2016)CrossRef P. Banerjee et al., Application of graphene oxide nanoplatelets for adsorption of ibuprofen from aqueous solutions: evaluation of process kinetics and thermodynamics. Process Saf. Environ. Prot. 101, 45–53 (2016)CrossRef
155.
Zurück zum Zitat P. Banerjee et al., Ultrasound assisted mixed azo dye adsorption by chitosan–graphene oxide nanocomposite. Chem. Eng. Res. Des. 117, 43–56 (2017)CrossRef P. Banerjee et al., Ultrasound assisted mixed azo dye adsorption by chitosan–graphene oxide nanocomposite. Chem. Eng. Res. Des. 117, 43–56 (2017)CrossRef
156.
Zurück zum Zitat M. Adel, M.A. Ahmed, A.A. Mohamed, Effective removal of cationic dyes from aqueous solutions using reduced graphene oxide functionalized with manganese ferrite nanoparticles. Compos. Commun. 22, 100450 (2020)CrossRef M. Adel, M.A. Ahmed, A.A. Mohamed, Effective removal of cationic dyes from aqueous solutions using reduced graphene oxide functionalized with manganese ferrite nanoparticles. Compos. Commun. 22, 100450 (2020)CrossRef
157.
Zurück zum Zitat W. Xu et al., Novel ternary nanohybrids of tetraethylenepentamine and graphene oxide decorated with MnFe2O4 magnetic nanoparticles for the adsorption of Pb (II). J. Hazard. Mater. 358, 337–345 (2018)CrossRef W. Xu et al., Novel ternary nanohybrids of tetraethylenepentamine and graphene oxide decorated with MnFe2O4 magnetic nanoparticles for the adsorption of Pb (II). J. Hazard. Mater. 358, 337–345 (2018)CrossRef
158.
Zurück zum Zitat A. Pourjavadi, M. Nazari, S.H. Hosseini, Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv. 5(41), 32263–32271 (2015)CrossRef A. Pourjavadi, M. Nazari, S.H. Hosseini, Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv. 5(41), 32263–32271 (2015)CrossRef
159.
Zurück zum Zitat L. Fan et al., Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 215, 272–279 (2012)CrossRef L. Fan et al., Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 215, 272–279 (2012)CrossRef
160.
Zurück zum Zitat S. Bhattacharya et al., Removal of aqueous carbamazepine using graphene oxide nanoplatelets: process modelling and optimization. Sustain. Environ. Res. 30(1), 1–12 (2020)MathSciNet S. Bhattacharya et al., Removal of aqueous carbamazepine using graphene oxide nanoplatelets: process modelling and optimization. Sustain. Environ. Res. 30(1), 1–12 (2020)MathSciNet
161.
Zurück zum Zitat R. Foroutan et al., Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv. Powder Technol. 31(9), 3993–4004 (2020)CrossRef R. Foroutan et al., Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv. Powder Technol. 31(9), 3993–4004 (2020)CrossRef
162.
Zurück zum Zitat M. Cao et al., Preparation of graphene oxide composite nitrogen-doped carbon (GO@NCs) by one-step carbonization with enhanced electrosorption performance for U(VI). J. Water Proc. Eng. 48, 102930 (2022)CrossRef M. Cao et al., Preparation of graphene oxide composite nitrogen-doped carbon (GO@NCs) by one-step carbonization with enhanced electrosorption performance for U(VI). J. Water Proc. Eng. 48, 102930 (2022)CrossRef
163.
Zurück zum Zitat L.P. Lingamdinne et al., Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J. Hazard. Mater. 326, 145–156 (2017)CrossRef L.P. Lingamdinne et al., Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J. Hazard. Mater. 326, 145–156 (2017)CrossRef
164.
Zurück zum Zitat K. Li et al., Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chem. Eng. J. 433, 134449 (2022)CrossRef K. Li et al., Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chem. Eng. J. 433, 134449 (2022)CrossRef
165.
Zurück zum Zitat L.P. Lingamdinne et al., Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite. J. Mol. Liq. 250, 202–211 (2018)CrossRef L.P. Lingamdinne et al., Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite. J. Mol. Liq. 250, 202–211 (2018)CrossRef
166.
Zurück zum Zitat S. Zhu et al., Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179, 20–28 (2017)CrossRef S. Zhu et al., Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179, 20–28 (2017)CrossRef
167.
Zurück zum Zitat Y. Tang et al., Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf., A 424, 74–80 (2013)CrossRef Y. Tang et al., Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf., A 424, 74–80 (2013)CrossRef
168.
Zurück zum Zitat S. Anuma, P. Mishra, B.R. Bhat, Polypyrrole functionalized Cobalt oxide Graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. J. Hazard. Mater. 416, 125929 (2021)CrossRef S. Anuma, P. Mishra, B.R. Bhat, Polypyrrole functionalized Cobalt oxide Graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. J. Hazard. Mater. 416, 125929 (2021)CrossRef
169.
Zurück zum Zitat M. Sivakumar et al., Porous graphene nanoplatelets encompassed with nitrogen and sulfur group for heavy metal ions removal of adsorption and desorption from single or mixed aqueous solution. Sep. Purif. Technol. 288, 120485 (2022)CrossRef M. Sivakumar et al., Porous graphene nanoplatelets encompassed with nitrogen and sulfur group for heavy metal ions removal of adsorption and desorption from single or mixed aqueous solution. Sep. Purif. Technol. 288, 120485 (2022)CrossRef
170.
Zurück zum Zitat B. Du et al., Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep. Purif. Technol. 297, 121509 (2022)CrossRef B. Du et al., Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep. Purif. Technol. 297, 121509 (2022)CrossRef
171.
Zurück zum Zitat Z.U. Khan et al., Graphene oxide/PVC composite papers functionalized with p-Phenylenediamine as high-performance sorbent for the removal of heavy metal ions. J. Environ. Chem. Eng. 9(5), 105916 (2021)CrossRef Z.U. Khan et al., Graphene oxide/PVC composite papers functionalized with p-Phenylenediamine as high-performance sorbent for the removal of heavy metal ions. J. Environ. Chem. Eng. 9(5), 105916 (2021)CrossRef
172.
Zurück zum Zitat M. Verma et al., Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater. Chemosphere 287, 132385 (2022)CrossRef M. Verma et al., Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater. Chemosphere 287, 132385 (2022)CrossRef
173.
Zurück zum Zitat X. Hao et al., Graphene oxide/montmorillonite composite aerogel with slit-shaped pores: Selective removal of Cu2+ from wastewater. J. Alloy. Compd. 923, 166335 (2022)CrossRef X. Hao et al., Graphene oxide/montmorillonite composite aerogel with slit-shaped pores: Selective removal of Cu2+ from wastewater. J. Alloy. Compd. 923, 166335 (2022)CrossRef
174.
Zurück zum Zitat Y.-H. Zhu et al., The synthesis of tannin-based graphene aerogel by hydrothermal treatment for removal of heavy metal ions. Ind. Crops Prod. 176, 114304 (2022)CrossRef Y.-H. Zhu et al., The synthesis of tannin-based graphene aerogel by hydrothermal treatment for removal of heavy metal ions. Ind. Crops Prod. 176, 114304 (2022)CrossRef
175.
Zurück zum Zitat J. Yan, R. Li, Simple and low-cost production of magnetite/graphene nanocomposites for heavy metal ions adsorption. Sci. Total Environ. 813, 152604 (2022)CrossRef J. Yan, R. Li, Simple and low-cost production of magnetite/graphene nanocomposites for heavy metal ions adsorption. Sci. Total Environ. 813, 152604 (2022)CrossRef
176.
Zurück zum Zitat J. Yan, K. Li, A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep. Purif. Technol. 277, 119469 (2021)CrossRef J. Yan, K. Li, A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep. Purif. Technol. 277, 119469 (2021)CrossRef
177.
Zurück zum Zitat L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J. 248, 191–199 (2014)CrossRef L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J. 248, 191–199 (2014)CrossRef
178.
Zurück zum Zitat S. Zhou et al., Montmorillonite-reduced graphene oxide composite aerogel (M−rGO): a green adsorbent for the dynamic removal of cadmium and methylene blue from wastewater. Sep. Purif. Technol. 296, 121416 (2022)CrossRef S. Zhou et al., Montmorillonite-reduced graphene oxide composite aerogel (M−rGO): a green adsorbent for the dynamic removal of cadmium and methylene blue from wastewater. Sep. Purif. Technol. 296, 121416 (2022)CrossRef
179.
Zurück zum Zitat X. Shi et al., Adsorption properties of graphene materials for pesticides: structure effect. J. Mol. Liq. 364, 119967 (2022)CrossRef X. Shi et al., Adsorption properties of graphene materials for pesticides: structure effect. J. Mol. Liq. 364, 119967 (2022)CrossRef
180.
Zurück zum Zitat F.A. Rosli et al., Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. R. Soc. Open Sci. 8(1), 201076 (2021)CrossRef F.A. Rosli et al., Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. R. Soc. Open Sci. 8(1), 201076 (2021)CrossRef
181.
Zurück zum Zitat E. Çalışkan Salihi et al., Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Sep. Sci. Technol. 56(3), 453–461 (2021)CrossRef E. Çalışkan Salihi et al., Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Sep. Sci. Technol. 56(3), 453–461 (2021)CrossRef
182.
Zurück zum Zitat Y. Gao et al., Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368(1), 540–546 (2012)CrossRef Y. Gao et al., Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368(1), 540–546 (2012)CrossRef
183.
Zurück zum Zitat P. Joshi et al., Fruit waste-derived cellulose and graphene-based aerogels: plausible adsorption pathways for fast and efficient removal of organic dyes. J. Colloid Interface Sci. 608, 2870–2883 (2022)CrossRef P. Joshi et al., Fruit waste-derived cellulose and graphene-based aerogels: plausible adsorption pathways for fast and efficient removal of organic dyes. J. Colloid Interface Sci. 608, 2870–2883 (2022)CrossRef
184.
Zurück zum Zitat T. Liu et al., Adsorption-photocatalysis performance of polyaniline/dicarboxyl acid cellulose@graphene oxide for dye removal. Int. J. Biol. Macromol. 182, 492–501 (2021)CrossRef T. Liu et al., Adsorption-photocatalysis performance of polyaniline/dicarboxyl acid cellulose@graphene oxide for dye removal. Int. J. Biol. Macromol. 182, 492–501 (2021)CrossRef
185.
Zurück zum Zitat Y. Qi et al., Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J. Colloid Interface Sci. 486, 84–96 (2017)CrossRef Y. Qi et al., Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J. Colloid Interface Sci. 486, 84–96 (2017)CrossRef
186.
Zurück zum Zitat P.M.M. da Silva et al., Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: batch, fixed-bed experiments and mechanism. Environ. Nanotechnol. Monit. Manag. 16, 100584 (2021) P.M.M. da Silva et al., Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: batch, fixed-bed experiments and mechanism. Environ. Nanotechnol. Monit. Manag. 16, 100584 (2021)
187.
Zurück zum Zitat D.R. Rout, H.M. Jena, Removal of malachite green dye from aqueous solution using reduced graphene oxide as an adsorbent. Mater. Today Proc. 47, 1173–1182 (2021)CrossRef D.R. Rout, H.M. Jena, Removal of malachite green dye from aqueous solution using reduced graphene oxide as an adsorbent. Mater. Today Proc. 47, 1173–1182 (2021)CrossRef
188.
Zurück zum Zitat H. Du et al., Multifunctional magnetic bio-nanoporous carbon material based on zero-valent iron, Angelicae Dahuricae Radix slag and graphene oxide: an efficient adsorbent of pesticides. Arab. J. Chem. 14(8), 103267 (2021)CrossRef H. Du et al., Multifunctional magnetic bio-nanoporous carbon material based on zero-valent iron, Angelicae Dahuricae Radix slag and graphene oxide: an efficient adsorbent of pesticides. Arab. J. Chem. 14(8), 103267 (2021)CrossRef
189.
Zurück zum Zitat A. Bibi et al., New material of polyacrylic acid-modified graphene oxide composite for phenol remediation from synthetic and real wastewater. Environ. Technol. Innov. 27, 102795 (2022)CrossRef A. Bibi et al., New material of polyacrylic acid-modified graphene oxide composite for phenol remediation from synthetic and real wastewater. Environ. Technol. Innov. 27, 102795 (2022)CrossRef
190.
Zurück zum Zitat M.A. Al-Ghouti et al., Effective removal of phenol from wastewater using a hybrid process of graphene oxide adsorption and UV-irradiation. Environ. Technol. Innov. 27, 102525 (2022)CrossRef M.A. Al-Ghouti et al., Effective removal of phenol from wastewater using a hybrid process of graphene oxide adsorption and UV-irradiation. Environ. Technol. Innov. 27, 102525 (2022)CrossRef
191.
Zurück zum Zitat H. Li et al., Reduced graphene oxide based aerogels: doped with ternary Prussian blue analogs and selective removal of Cs+ from effluent. J. Water Proc. Eng. 47, 102741 (2022)CrossRef H. Li et al., Reduced graphene oxide based aerogels: doped with ternary Prussian blue analogs and selective removal of Cs+ from effluent. J. Water Proc. Eng. 47, 102741 (2022)CrossRef
192.
Zurück zum Zitat X. Liu, J. Wu, J. Wang, Removal of Cs (I) from simulated radioactive wastewater by three forward osmosis membranes. Chem. Eng. J. 344, 353–362 (2018)CrossRef X. Liu, J. Wu, J. Wang, Removal of Cs (I) from simulated radioactive wastewater by three forward osmosis membranes. Chem. Eng. J. 344, 353–362 (2018)CrossRef
193.
Zurück zum Zitat V. Chandra et al., Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7), 3979–3986 (2010)CrossRef V. Chandra et al., Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7), 3979–3986 (2010)CrossRef
194.
Zurück zum Zitat P. Sun et al., Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation−π interactions. ACS Nano 8(1), 850–859 (2014)CrossRef P. Sun et al., Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation−π interactions. ACS Nano 8(1), 850–859 (2014)CrossRef
195.
Zurück zum Zitat M. Sharma et al., Selective removal of uranium from an aqueous solution of mixed radionuclides of uranium, cesium, and strontium via a viable recyclable GO@chitosan based magnetic nanocomposite. Mater. Today Commun. 32, 104020 (2022)CrossRef M. Sharma et al., Selective removal of uranium from an aqueous solution of mixed radionuclides of uranium, cesium, and strontium via a viable recyclable GO@chitosan based magnetic nanocomposite. Mater. Today Commun. 32, 104020 (2022)CrossRef
196.
Zurück zum Zitat S. Zhou et al., Amidoxime modified chitosan/graphene oxide composite for efficient adsorption of U(VI) from aqueous solutions. J. Environ. Chem. Eng. 9(6), 106363 (2021)CrossRef S. Zhou et al., Amidoxime modified chitosan/graphene oxide composite for efficient adsorption of U(VI) from aqueous solutions. J. Environ. Chem. Eng. 9(6), 106363 (2021)CrossRef
197.
Zurück zum Zitat X. Zhong et al., Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal. J. Mol. Liq. 323, 114603 (2021)CrossRef X. Zhong et al., Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal. J. Mol. Liq. 323, 114603 (2021)CrossRef
198.
Zurück zum Zitat M. Su et al., Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution. Environ. Pollut. 268, 115786 (2021)CrossRef M. Su et al., Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution. Environ. Pollut. 268, 115786 (2021)CrossRef
199.
Zurück zum Zitat J.-B. Huo, G. Yu, J. Wang, Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel. Chemosphere 278, 130492 (2021)CrossRef J.-B. Huo, G. Yu, J. Wang, Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel. Chemosphere 278, 130492 (2021)CrossRef
200.
Zurück zum Zitat C. Mu et al., Removal of bisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via an adsorption-photocatalysis synergy. Appl. Catal. B 212, 41–49 (2017)CrossRef C. Mu et al., Removal of bisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via an adsorption-photocatalysis synergy. Appl. Catal. B 212, 41–49 (2017)CrossRef
201.
Zurück zum Zitat W. Wang et al., Adsorption and competition investigation of phenolic compounds on the solid-liquid interface of three-dimensional foam-like graphene oxide. Chem. Eng. J. 378, 122085 (2019)CrossRef W. Wang et al., Adsorption and competition investigation of phenolic compounds on the solid-liquid interface of three-dimensional foam-like graphene oxide. Chem. Eng. J. 378, 122085 (2019)CrossRef
202.
Zurück zum Zitat T.R. Das et al., Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J. Colloid Interface Sci. 509, 82–93 (2018)CrossRef T.R. Das et al., Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J. Colloid Interface Sci. 509, 82–93 (2018)CrossRef
203.
Zurück zum Zitat M. Deng, Y. Huang, The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites. Ceram. Int. 46(2), 2565–2570 (2020)CrossRef M. Deng, Y. Huang, The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites. Ceram. Int. 46(2), 2565–2570 (2020)CrossRef
204.
Zurück zum Zitat N. Liu et al., Stabilized magnetic enzyme aggregates on graphene oxide for high performance phenol and bisphenol A removal. Chem. Eng. J. 306, 1026–1034 (2016)CrossRef N. Liu et al., Stabilized magnetic enzyme aggregates on graphene oxide for high performance phenol and bisphenol A removal. Chem. Eng. J. 306, 1026–1034 (2016)CrossRef
205.
Zurück zum Zitat R. Hu et al., Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites. J. Mol. Liq. 203, 80–89 (2015)CrossRef R. Hu et al., Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites. J. Mol. Liq. 203, 80–89 (2015)CrossRef
206.
Zurück zum Zitat E.R. Hugo et al., Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. 116(12), 1642–1647 (2008)CrossRef E.R. Hugo et al., Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. 116(12), 1642–1647 (2008)CrossRef
207.
Zurück zum Zitat F. Chen et al., Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@ rGO exhibiting adsorption/photocatalysis synergy. Appl. Catal. B 217, 65–80 (2017)CrossRef F. Chen et al., Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@ rGO exhibiting adsorption/photocatalysis synergy. Appl. Catal. B 217, 65–80 (2017)CrossRef
Metadaten
Titel
Adsorptive Removal of Pollutants Using Graphene-based Materials for Water Purification
verfasst von
Lesego Tabea Temane
Jonathan Tersur Orasugh
Suprakas Sinha Ray
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.