Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Advancement of Glass-Ceramic Materials for Photonic Applications

verfasst von : Alexander Quandt, Maurizio Ferrari, Giancarlo C. Righini

Erschienen in: Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Glasses, even if often considered a simple, passive, material, constitute an important piece of the photonic puzzle, where active and passive components have to be integrated in order to realize advanced devices able to play with the light at different scales, from the macro to micro and nano. A material group which is known since more than 60 years but was becoming of real interest in photonics only in the last decade is represented by glass-ceramics, namely materials containing one or more crystalline phases evenly distributed within the glass phase. Here a brief overview is presented of the compositions and properties of several glass-ceramics, especially in thin-film format, which have been produced starting with a sol–gel process and have exhibited characteristics which are significant for several photonic applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baynton PL, Rawson H, Stanworth JE (1954) Vanadate glasses. Nature 173:1030–1032 Baynton PL, Rawson H, Stanworth JE (1954) Vanadate glasses. Nature 173:1030–1032
2.
Zurück zum Zitat Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46CrossRef Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46CrossRef
3.
Zurück zum Zitat Mackenzie JD (ed) (1960–1964) Modern aspects of the vitreous state, vol 1–3. Butterworths, Washington Mackenzie JD (ed) (1960–1964) Modern aspects of the vitreous state, vol 1–3. Butterworths, Washington
4.
Zurück zum Zitat Sayer M, Mansingh A (1972) Transport properties of semiconducting phosphate glasses. Phys Rev B 6:4629CrossRef Sayer M, Mansingh A (1972) Transport properties of semiconducting phosphate glasses. Phys Rev B 6:4629CrossRef
5.
Zurück zum Zitat Yamane M, Asahara Y (2000) Glasses for photonics. Cambridge University Press, Cambridge Yamane M, Asahara Y (2000) Glasses for photonics. Cambridge University Press, Cambridge
6.
Zurück zum Zitat Hirao K, Mitsuyu T, Si J, Qiu J (eds) (2001) Active glass for photonic devices: photoinduced structures and their application. Springer, Berlin Hirao K, Mitsuyu T, Si J, Qiu J (eds) (2001) Active glass for photonic devices: photoinduced structures and their application. Springer, Berlin
7.
Zurück zum Zitat Balda R (ed) (2006) Photonic glasses 2006. Research Signpost, Trivandrum Balda R (ed) (2006) Photonic glasses 2006. Research Signpost, Trivandrum
8.
Zurück zum Zitat Gan F, Xu L (eds) (2006) Photonic glasses. World Scientific, Singapore Gan F, Xu L (eds) (2006) Photonic glasses. World Scientific, Singapore
9.
Zurück zum Zitat Adam JL, Zhang X (eds) (2014) Chalcogenide glasses: preparation, properties and applications. Woodhead Publishing, Philadelphia Adam JL, Zhang X (eds) (2014) Chalcogenide glasses: preparation, properties and applications. Woodhead Publishing, Philadelphia
10.
Zurück zum Zitat Reisfeld R, Jorgensen CK (1992) Chemistry, spectroscopy and applications of sol-gel glasses. Springer, BerlinCrossRef Reisfeld R, Jorgensen CK (1992) Chemistry, spectroscopy and applications of sol-gel glasses. Springer, BerlinCrossRef
11.
Zurück zum Zitat Klein LC (ed) (1994) Sol-gel optics: processing and applications. Springer Science+Business Media, New York Klein LC (ed) (1994) Sol-gel optics: processing and applications. Springer Science+Business Media, New York
12.
Zurück zum Zitat Sakka S (ed) (2005) Handbook of sol-gel science and technology, 3 vols. Kluwer Academic Publisher, Boston Sakka S (ed) (2005) Handbook of sol-gel science and technology, 3 vols. Kluwer Academic Publisher, Boston
13.
Zurück zum Zitat Bardosova M, Wagner T (eds) (2015) Nanomaterials and nanoarchitectures: a complex review of current hot topics. Springer Science+Business Media, Dordrecht Bardosova M, Wagner T (eds) (2015) Nanomaterials and nanoarchitectures: a complex review of current hot topics. Springer Science+Business Media, Dordrecht
14.
15.
16.
Zurück zum Zitat Marghussian V (2015) Nano-glass ceramics. processing, properties and applications. William Andrew, Norwich Marghussian V (2015) Nano-glass ceramics. processing, properties and applications. William Andrew, Norwich
17.
Zurück zum Zitat de Pablos-Martin A, Ferrari M, Pascual MJ, Righini GC (2015) Glass-ceramics: a class of nanostructured materials for photonics. Rivista Nuovo Cimento 38:311–369 de Pablos-Martin A, Ferrari M, Pascual MJ, Righini GC (2015) Glass-ceramics: a class of nanostructured materials for photonics. Rivista Nuovo Cimento 38:311–369
18.
Zurück zum Zitat Karmakar B, Rademann K, Stepanov A (2016) Glass nanocomposites: synthesis, properties and applications. William Andrew, Norwich Karmakar B, Rademann K, Stepanov A (2016) Glass nanocomposites: synthesis, properties and applications. William Andrew, Norwich
19.
Zurück zum Zitat Tong XC (2013) Advanced materials for integrated optical waveguides. Springer, Heidelberg Tong XC (2013) Advanced materials for integrated optical waveguides. Springer, Heidelberg
20.
Zurück zum Zitat Najafi SI (ed) (1998) Selected papers on sol-gel for photonics. SPIE Optical Engineering Press, Bellingham Najafi SI (ed) (1998) Selected papers on sol-gel for photonics. SPIE Optical Engineering Press, Bellingham
21.
Zurück zum Zitat Tick PA (1998) Are low-loss glass–ceramic optical waveguides possible? Opt Lett 23:1904–1905CrossRef Tick PA (1998) Are low-loss glass–ceramic optical waveguides possible? Opt Lett 23:1904–1905CrossRef
22.
Zurück zum Zitat Berthier T, Fokin VM, Zanotto ED (2008) New large grain, highly crystalline, transparent glass–ceramics. J Non-Cryst Solids 354:1721–1730CrossRef Berthier T, Fokin VM, Zanotto ED (2008) New large grain, highly crystalline, transparent glass–ceramics. J Non-Cryst Solids 354:1721–1730CrossRef
23.
Zurück zum Zitat Wang SM et al (2010) Crystallization behavior of a new transparent glass-ceramics. Adv Mater Res 105–106:597–599CrossRef Wang SM et al (2010) Crystallization behavior of a new transparent glass-ceramics. Adv Mater Res 105–106:597–599CrossRef
24.
Zurück zum Zitat Edgar A, Williams GVM, Hamelin J (2006) Optical scattering in glass ceramics. Curr Appl Phys 6:355–358CrossRef Edgar A, Williams GVM, Hamelin J (2006) Optical scattering in glass ceramics. Curr Appl Phys 6:355–358CrossRef
25.
Zurück zum Zitat Mattarelli M, Montagna M, Verrocchio P (2007) Ultratransparent glass ceramics: the structure factor and the quenching of the Rayleigh scattering. Appl Phys Lett 91:061911-1/3 Mattarelli M, Montagna M, Verrocchio P (2007) Ultratransparent glass ceramics: the structure factor and the quenching of the Rayleigh scattering. Appl Phys Lett 91:061911-1/3
26.
Zurück zum Zitat Righini GC et al (2005) Laser irradiation, ion implantation and e-beam writing of integrated optical structures. Proc SPIE 5840:649–657CrossRef Righini GC et al (2005) Laser irradiation, ion implantation and e-beam writing of integrated optical structures. Proc SPIE 5840:649–657CrossRef
27.
Zurück zum Zitat Righini GC, Chiappini A (2014) Glass optical waveguides: a review of fabrication techniques. Opt Eng 53(071819):1–14 Righini GC, Chiappini A (2014) Glass optical waveguides: a review of fabrication techniques. Opt Eng 53(071819):1–14
28.
Zurück zum Zitat Osellame R, Cerullo G, Ramponi R (eds) (2012) Femtosecond laser micromachining. Springer, Berlin Osellame R, Cerullo G, Ramponi R (eds) (2012) Femtosecond laser micromachining. Springer, Berlin
29.
Zurück zum Zitat Marowsky G (ed) (2014) Planar waveguides and other confined geometries. Springer Science+Business Media, New York Marowsky G (ed) (2014) Planar waveguides and other confined geometries. Springer Science+Business Media, New York
30.
Zurück zum Zitat Bauters JF et al (2013) Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express 21:544–555CrossRef Bauters JF et al (2013) Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express 21:544–555CrossRef
32.
Zurück zum Zitat Touam T et al (2013) Low loss sol-gel TiO2 thin films for waveguiding applications. Coatings 3:49–58CrossRef Touam T et al (2013) Low loss sol-gel TiO2 thin films for waveguiding applications. Coatings 3:49–58CrossRef
33.
Zurück zum Zitat Karasiński P et al (2015) Low loss, long time stable sol–gel derived silica–titania waveguide films. Mater Lett 143:5–7CrossRef Karasiński P et al (2015) Low loss, long time stable sol–gel derived silica–titania waveguide films. Mater Lett 143:5–7CrossRef
34.
Zurück zum Zitat Chiappini A et al (2009) Preparation and characterization of ZnO particles embedded in organic–inorganic planar waveguide by sol–gel route. J Non-Crystal Sol 355:1132–1135CrossRef Chiappini A et al (2009) Preparation and characterization of ZnO particles embedded in organic–inorganic planar waveguide by sol–gel route. J Non-Crystal Sol 355:1132–1135CrossRef
35.
Zurück zum Zitat Kandula KR, Sarkar A, Bhaktha BNS (2013) Sol-gel fabrication and characterization of ZnO and Zn2SiO4 nanoparticles embedded silica glass-ceramic waveguides. Opt Mat Express 3:2078–2085CrossRef Kandula KR, Sarkar A, Bhaktha BNS (2013) Sol-gel fabrication and characterization of ZnO and Zn2SiO4 nanoparticles embedded silica glass-ceramic waveguides. Opt Mat Express 3:2078–2085CrossRef
36.
Zurück zum Zitat Biswas A et al (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci 170:2–27CrossRef Biswas A et al (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci 170:2–27CrossRef
37.
Zurück zum Zitat Jestin Y et al (2007) Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach. Appl Phys Lett 91:071909_1-3 Jestin Y et al (2007) Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach. Appl Phys Lett 91:071909_1-3
39.
Zurück zum Zitat Battisha I, El Nahrawy A (2012) Physical properties of nano-composite silica-phosphate thin film prepared by sol gel. New J Glass Ceram 2:17–22CrossRef Battisha I, El Nahrawy A (2012) Physical properties of nano-composite silica-phosphate thin film prepared by sol gel. New J Glass Ceram 2:17–22CrossRef
40.
Zurück zum Zitat Yuan B, Chen QQ, Wang MQ (1989) Crystallisation and properties of Li-Al-B-Ti-Zn-silicate sytem glass ceramic fibres. J Mater Sci 24:4488–4494CrossRef Yuan B, Chen QQ, Wang MQ (1989) Crystallisation and properties of Li-Al-B-Ti-Zn-silicate sytem glass ceramic fibres. J Mater Sci 24:4488–4494CrossRef
41.
Zurück zum Zitat Committee on Advanced Fibers for High-Temperature Ceramic Composites (1998) Ceramic fibers and coatings: advanced materials for the twenty-first century. National Academies Press, Washington Committee on Advanced Fibers for High-Temperature Ceramic Composites (1998) Ceramic fibers and coatings: advanced materials for the twenty-first century. National Academies Press, Washington
42.
Zurück zum Zitat Komatsu T et al (1990) Preparation of Ag-coated superconducting Bi2Sr2CaCu2Ox glass ceramic fibres. Appl Phys Lett 57:183–185CrossRef Komatsu T et al (1990) Preparation of Ag-coated superconducting Bi2Sr2CaCu2Ox glass ceramic fibres. Appl Phys Lett 57:183–185CrossRef
43.
Zurück zum Zitat Hu Y, Zheng H, Mackenzie JD (1995) High-Tc superconducting Bi(Al)-Ca-Sr-Cu-O glass ceramic fibres drawn from glass preforms. J Mater Sci 30:3913–3918CrossRef Hu Y, Zheng H, Mackenzie JD (1995) High-Tc superconducting Bi(Al)-Ca-Sr-Cu-O glass ceramic fibres drawn from glass preforms. J Mater Sci 30:3913–3918CrossRef
44.
Zurück zum Zitat Wallenberger FT (ed) (2000) Advanced inorganic fibers: processes—structure—properties—applications. Kluwer Academic Publishers, Norwell Wallenberger FT (ed) (2000) Advanced inorganic fibers: processes—structure—properties—applications. Kluwer Academic Publishers, Norwell
45.
Zurück zum Zitat Digonnet MJF (2001) Rare-earth-doped fiber lasers and amplifiers, 2nd edn. Marcel Dekker, New York Digonnet MJF (2001) Rare-earth-doped fiber lasers and amplifiers, 2nd edn. Marcel Dekker, New York
46.
Zurück zum Zitat Shamsudin Z et al (2015) Investigation of the mechanical properties and fracture morphology of glass ceramic fibers. Adv Manuf Polym Compos Sci 1:120–127 Shamsudin Z et al (2015) Investigation of the mechanical properties and fracture morphology of glass ceramic fibers. Adv Manuf Polym Compos Sci 1:120–127
48.
Zurück zum Zitat Teng Y, Sharafudeen K, Zhou S, Qiu J (2012) Glass-ceramics for photonic devices. J Ceram Soc Jpn 120:458–466CrossRef Teng Y, Sharafudeen K, Zhou S, Qiu J (2012) Glass-ceramics for photonic devices. J Ceram Soc Jpn 120:458–466CrossRef
49.
Zurück zum Zitat Bhaktha SBN et al (2008) Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content. Appl Phys Lett 93:211904CrossRef Bhaktha SBN et al (2008) Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content. Appl Phys Lett 93:211904CrossRef
50.
Zurück zum Zitat Pan Z et al (2012) Visible to near-infrared down-conversion luminescence in Tb3+ and Yb3+ co-doped lithium–lanthanum–aluminosilicate oxyfluoride glass and glass-ceramics. J Non-Cryst Sol 358:1814–1817CrossRef Pan Z et al (2012) Visible to near-infrared down-conversion luminescence in Tb3+ and Yb3+ co-doped lithium–lanthanum–aluminosilicate oxyfluoride glass and glass-ceramics. J Non-Cryst Sol 358:1814–1817CrossRef
51.
Zurück zum Zitat Wang Y, Ohwaki J (1993) New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl Phys Lett 63:3268–3270CrossRef Wang Y, Ohwaki J (1993) New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl Phys Lett 63:3268–3270CrossRef
52.
Zurück zum Zitat Tick PA, Borrelli NF, Reaney IM (2000) The relationship between structure and transparency in glass-ceramic materials. Opt Mater 15:81–91CrossRef Tick PA, Borrelli NF, Reaney IM (2000) The relationship between structure and transparency in glass-ceramic materials. Opt Mater 15:81–91CrossRef
53.
Zurück zum Zitat Samson BN, Tick PA, Borrelli NF (2001) Efficient neodymium-doped glass-ceramic fiber laser and amplifier. Opt Lett 26:145–147CrossRef Samson BN, Tick PA, Borrelli NF (2001) Efficient neodymium-doped glass-ceramic fiber laser and amplifier. Opt Lett 26:145–147CrossRef
54.
Zurück zum Zitat Zhang X et al (2004) Optical fibers and molded optics in infrared transparent glass-ceramic. J Non-Cryst Sol 336:49–52CrossRef Zhang X et al (2004) Optical fibers and molded optics in infrared transparent glass-ceramic. J Non-Cryst Sol 336:49–52CrossRef
55.
Zurück zum Zitat Augustyn E, Zelechower M, Stroz D, Chraponski J (2012) The microstructure of erbium–ytterbium co-doped oxyfluoride glass–ceramic optical fibers. Opt Mater 34:944–950CrossRef Augustyn E, Zelechower M, Stroz D, Chraponski J (2012) The microstructure of erbium–ytterbium co-doped oxyfluoride glass–ceramic optical fibers. Opt Mater 34:944–950CrossRef
56.
Zurück zum Zitat Reben M et al (2012) Nd3+-doped oxyfluoride glass ceramics optical fibre with SrF2 nanocrystals. Opt Appl XLII:353–364 Reben M et al (2012) Nd3+-doped oxyfluoride glass ceramics optical fibre with SrF2 nanocrystals. Opt Appl XLII:353–364
57.
Zurück zum Zitat Blanc W, Guillermier C, Dussardier B (2012) Composition of nanoparticles in optical fibers by secondary ion mass spectrometry. Opt Mater Exp 2:1504–1510CrossRef Blanc W, Guillermier C, Dussardier B (2012) Composition of nanoparticles in optical fibers by secondary ion mass spectrometry. Opt Mater Exp 2:1504–1510CrossRef
58.
Zurück zum Zitat Yoo S, Paek U-C, Han W-T (2003) Development of a glass optical fiber containing ZnO–Al2O3–SiO2 glass-ceramics doped with Co2+ and its optical absorption characteristics. J Non-Cryst Sol 315:180–186CrossRef Yoo S, Paek U-C, Han W-T (2003) Development of a glass optical fiber containing ZnO–Al2O3–SiO2 glass-ceramics doped with Co2+ and its optical absorption characteristics. J Non-Cryst Sol 315:180–186CrossRef
59.
Zurück zum Zitat Fang Z et al (2015) Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals. J Am Ceram Soc 98:2772–2775CrossRef Fang Z et al (2015) Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals. J Am Ceram Soc 98:2772–2775CrossRef
60.
Zurück zum Zitat Granger G et al (2013) First demonstration of a laser emission in hybrid nanostructured optical fibres based on SiO2/SnO2 system doped by ytterbium ions. In: Proc E-CLEO, Paper# CJ_P_38 Granger G et al (2013) First demonstration of a laser emission in hybrid nanostructured optical fibres based on SiO2/SnO2 system doped by ytterbium ions. In: Proc E-CLEO, Paper# CJ_P_38
61.
Zurück zum Zitat Granger G et al (2015) Laser emission in Yb3+ doped SiO2-ZrO2 nanostructured optical fiber synthetized by the chemical sol-gel “inverse dip-coating” approach. In: Proc E-CLEO, Paper# CJ_P_49 Granger G et al (2015) Laser emission in Yb3+ doped SiO2-ZrO2 nanostructured optical fiber synthetized by the chemical sol-gel “inverse dip-coating” approach. In: Proc E-CLEO, Paper# CJ_P_49
62.
Zurück zum Zitat Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego
63.
Zurück zum Zitat Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11:174–177CrossRef Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11:174–177CrossRef
64.
Zurück zum Zitat Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519CrossRef Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519CrossRef
65.
Zurück zum Zitat Würfel P (2009) Physics of solar cells. Wiley-VCH, Weinheim Würfel P (2009) Physics of solar cells. Wiley-VCH, Weinheim
66.
Zurück zum Zitat Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye sensitized solar cells: a brief overview. Sol Energy 85:1172–1178CrossRef Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye sensitized solar cells: a brief overview. Sol Energy 85:1172–1178CrossRef
67.
Zurück zum Zitat Green MA et al (2016) Solar cell efficiency tables. Prog Photovolt 24:3–11 Green MA et al (2016) Solar cell efficiency tables. Prog Photovolt 24:3–11
68.
Zurück zum Zitat Trupke T, Green MA, Würfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92:4117–4122CrossRef Trupke T, Green MA, Würfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92:4117–4122CrossRef
69.
Zurück zum Zitat Wybourne BG (2004) The fascination of the rare earths—then, now and in the future. J Alloys Comp 380:96–100CrossRef Wybourne BG (2004) The fascination of the rare earths—then, now and in the future. J Alloys Comp 380:96–100CrossRef
70.
Zurück zum Zitat Shalav A, Richards BS, Green MA (2006) Luminescent layers for enhanced solar cell performance: up-conversion. Solar Energy Mater Solar Cells 91:829–842CrossRef Shalav A, Richards BS, Green MA (2006) Luminescent layers for enhanced solar cell performance: up-conversion. Solar Energy Mater Solar Cells 91:829–842CrossRef
71.
Zurück zum Zitat Richards BS (2006) Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Solar Energy Mater Solar Cells 90:2329–2337CrossRef Richards BS (2006) Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Solar Energy Mater Solar Cells 90:2329–2337CrossRef
72.
Zurück zum Zitat Strümpel C et al (2007) Modifying the solar spectrum to enhance silicon cell efficiency—an overview of available materials. Solar Energy Mater Solar Cells 91:238–249CrossRef Strümpel C et al (2007) Modifying the solar spectrum to enhance silicon cell efficiency—an overview of available materials. Solar Energy Mater Solar Cells 91:238–249CrossRef
73.
Zurück zum Zitat Huang X et al (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–200CrossRef Huang X et al (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–200CrossRef
74.
Zurück zum Zitat Chena D et al (2015) Enhanced upconversion luminescence in phase-separation-controlled crystallization glass ceramics containing Yb/Er(Tm): NaLuF4 nanocrystals. J Eur Ceram Soc 35:2129–2137CrossRef Chena D et al (2015) Enhanced upconversion luminescence in phase-separation-controlled crystallization glass ceramics containing Yb/Er(Tm): NaLuF4 nanocrystals. J Eur Ceram Soc 35:2129–2137CrossRef
75.
Zurück zum Zitat Rodriguez VD et al (2010) Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics. Solar Energy Mater Solar Cells 94:1612–1617CrossRef Rodriguez VD et al (2010) Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics. Solar Energy Mater Solar Cells 94:1612–1617CrossRef
76.
Zurück zum Zitat Tikhomirov VK et al (2012) Optimizing Er/Yb ratio and content in Er-Yb co-doped glass ceramics for enhancement of the up- and down-conversion luminescence. Solar Energy Mater Solar Cells 100:209–215CrossRef Tikhomirov VK et al (2012) Optimizing Er/Yb ratio and content in Er-Yb co-doped glass ceramics for enhancement of the up- and down-conversion luminescence. Solar Energy Mater Solar Cells 100:209–215CrossRef
77.
Zurück zum Zitat Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRef Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRef
78.
Zurück zum Zitat Nelson RE (2003) A brief history of thermophotovoltaic development. Semicond Sci Technol 18:S141–S143CrossRef Nelson RE (2003) A brief history of thermophotovoltaic development. Semicond Sci Technol 18:S141–S143CrossRef
79.
Zurück zum Zitat Orera VM, Merino RI (2015) Ceramics with photonic and optical applications. Bol Soc Espanola Ceramica Vidrio 54:1–10CrossRef Orera VM, Merino RI (2015) Ceramics with photonic and optical applications. Bol Soc Espanola Ceramica Vidrio 54:1–10CrossRef
80.
Zurück zum Zitat Lin SY, Moreno J, Fleming JG (2003) Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl Phys Lett 83:380–382CrossRef Lin SY, Moreno J, Fleming JG (2003) Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl Phys Lett 83:380–382CrossRef
81.
Zurück zum Zitat Dislich H, Hinz P (1982) History and principles of the sol-gel process, and some new multicomponent oxide coatings. J Non-Cryst Sol 48:11–16CrossRef Dislich H, Hinz P (1982) History and principles of the sol-gel process, and some new multicomponent oxide coatings. J Non-Cryst Sol 48:11–16CrossRef
82.
Zurück zum Zitat Klein LC (1993) Sol-gel optical materials. Annu Rev Mater Sci 23:437–452CrossRef Klein LC (1993) Sol-gel optical materials. Annu Rev Mater Sci 23:437–452CrossRef
83.
Zurück zum Zitat Guldin S et al (2010) Dye-sensitized solar cell on a three-dimensional photonic crystal. Nano Lett 10:2303–2309CrossRef Guldin S et al (2010) Dye-sensitized solar cell on a three-dimensional photonic crystal. Nano Lett 10:2303–2309CrossRef
84.
Zurück zum Zitat Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, Princeton Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, Princeton
85.
Zurück zum Zitat Chiappini A et al (2011) Sol-gel-derived photonic structures: fabrication, assessment and application. J Sol-Gel Sci Technol 60:408–425CrossRef Chiappini A et al (2011) Sol-gel-derived photonic structures: fabrication, assessment and application. J Sol-Gel Sci Technol 60:408–425CrossRef
86.
Zurück zum Zitat Almeida RM, Portal S (2003) Photonic band gap structures by sol-gel processing. Curr Opin Solid State Mater Sci 7:151–157CrossRef Almeida RM, Portal S (2003) Photonic band gap structures by sol-gel processing. Curr Opin Solid State Mater Sci 7:151–157CrossRef
87.
Zurück zum Zitat Rayleigh JWS (1888) On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. Philos Mag 26:256–265CrossRef Rayleigh JWS (1888) On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. Philos Mag 26:256–265CrossRef
88.
Zurück zum Zitat Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062CrossRef Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062CrossRef
89.
Zurück zum Zitat John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489CrossRef John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489CrossRef
90.
Zurück zum Zitat Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf Sci 26:62–69CrossRef Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf Sci 26:62–69CrossRef
91.
Zurück zum Zitat Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11:2132–2140CrossRef Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11:2132–2140CrossRef
92.
Zurück zum Zitat Lempicki A, Edwards M, Beall GH, Hall DJ, Andrews LJ (1985) Transparent glass ceramics: laser prospects. In: Advanced solid state lasers, Optical Society of America, paper FA8 Lempicki A, Edwards M, Beall GH, Hall DJ, Andrews LJ (1985) Transparent glass ceramics: laser prospects. In: Advanced solid state lasers, Optical Society of America, paper FA8
93.
Zurück zum Zitat Sgibnev Y et al (2016) Photostructurable photo-thermo-refractive glass. Opt Exp 24:4563–4572 Sgibnev Y et al (2016) Photostructurable photo-thermo-refractive glass. Opt Exp 24:4563–4572
94.
Zurück zum Zitat Soares de Lima Filho et al (2015) Ytterbium-doped glass-ceramics for optical refrigeration. Opt Exp 23:4630–4640 Soares de Lima Filho et al (2015) Ytterbium-doped glass-ceramics for optical refrigeration. Opt Exp 23:4630–4640
Metadaten
Titel
Advancement of Glass-Ceramic Materials for Photonic Applications
verfasst von
Alexander Quandt
Maurizio Ferrari
Giancarlo C. Righini
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-49512-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.