Skip to main content
Erschienen in: Journal of Materials Science 16/2017

28.04.2017 | Review

Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions

verfasst von: Ayomide H. Labulo, Bice S. Martincigh, Bernard Omondi, Vincent O. Nyamori

Erschienen in: Journal of Materials Science | Ausgabe 16/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the 1970s, palladium-catalysed carbon–carbon (C–C) bond formation has made a critical impact in organic synthesis. In early studies, homogeneous palladium catalysts were extensively used for this reaction with limitations such as difficulty in separation and recycling ability. Lately, heterogeneous palladium-based catalysts have shown promise as surrogates for conventional homogeneous catalysts in C–C coupling reactions, since the product is easy to isolate, while the catalyst is reusable and hence sustainable. Recently, a better part of these heterogeneous palladium catalysts are supported on carbon nanotubes (Pd/CNTs), that have shown superior catalytic performance and better recyclability since the CNT support imparts stability to the palladium catalyst. This review discusses the wide variety of surface functionalization techniques for CNTs that improve their properties as catalyst supports, as well as the methods available for loading the catalyst nanoparticles onto the CNTs. It will survey the literature where Pd/CNTs catalysts have been utilized for C–C coupling reactions, with particular emphasis on Suzuki–Miyaura and Mizoroki–Heck coupling reactions. It will also highlight some of the important parameters that affect these reactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492CrossRef Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492CrossRef
2.
Zurück zum Zitat Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem Rev 111:1215–1292CrossRef Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem Rev 111:1215–1292CrossRef
3.
Zurück zum Zitat Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Suzuki–Miyaura cross-coupling reactions in aqueous media: green and sustainable syntheses of biaryls. Chemsuschem 3:502–522CrossRef Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Suzuki–Miyaura cross-coupling reactions in aqueous media: green and sustainable syntheses of biaryls. Chemsuschem 3:502–522CrossRef
4.
Zurück zum Zitat Shibasaki M, Boden CD, Kojima A (1997) The asymmetric Heck reaction. Tetrahedron 53:7371–7395CrossRef Shibasaki M, Boden CD, Kojima A (1997) The asymmetric Heck reaction. Tetrahedron 53:7371–7395CrossRef
5.
Zurück zum Zitat Grosso-Giordano NA, Eaton TR, Bo Z, Yacob S, Yang C-C, Notestein JM (2016) Silica support modifications to enhance Pd-catalyzed deoxygenation of stearic acid. Appl Catal B Environ 192:93–100CrossRef Grosso-Giordano NA, Eaton TR, Bo Z, Yacob S, Yang C-C, Notestein JM (2016) Silica support modifications to enhance Pd-catalyzed deoxygenation of stearic acid. Appl Catal B Environ 192:93–100CrossRef
6.
Zurück zum Zitat París RS, L’Abbate ME, Liotta LF, Montes V, Barrientos J, Regali F et al (2016) Hydroconversion of paraffinic wax over platinum and palladium catalysts supported on silica–alumina. Catal Today 275:141–148CrossRef París RS, L’Abbate ME, Liotta LF, Montes V, Barrientos J, Regali F et al (2016) Hydroconversion of paraffinic wax over platinum and palladium catalysts supported on silica–alumina. Catal Today 275:141–148CrossRef
7.
Zurück zum Zitat Wang C, Wang L, Zhang J, Wang H, Lewis JP, Xiao F-S (2016) Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J Am Chem Soc 138:7880–7883CrossRef Wang C, Wang L, Zhang J, Wang H, Lewis JP, Xiao F-S (2016) Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J Am Chem Soc 138:7880–7883CrossRef
8.
Zurück zum Zitat Giacalone F, Gruttadauria M (2016) Covalently supported ionic liquid phases: an advanced class of recyclable catalytic systems. ChemCatChem 8:664–684CrossRef Giacalone F, Gruttadauria M (2016) Covalently supported ionic liquid phases: an advanced class of recyclable catalytic systems. ChemCatChem 8:664–684CrossRef
9.
Zurück zum Zitat Molnar A (2011) Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem Rev 111:2251–2320CrossRef Molnar A (2011) Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem Rev 111:2251–2320CrossRef
10.
Zurück zum Zitat Yin L, Liebscher J (2007) Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173CrossRef Yin L, Liebscher J (2007) Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173CrossRef
11.
Zurück zum Zitat Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075CrossRef Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075CrossRef
12.
Zurück zum Zitat Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C–C coupling reactions. Chem Soc Rev 40:4973–4985CrossRef Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C–C coupling reactions. Chem Soc Rev 40:4973–4985CrossRef
13.
Zurück zum Zitat Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A Gen 173:259–271CrossRef Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A Gen 173:259–271CrossRef
14.
Zurück zum Zitat Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253:337–358CrossRef Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253:337–358CrossRef
15.
17.
Zurück zum Zitat Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318:162–163CrossRef Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318:162–163CrossRef
18.
Zurück zum Zitat Aqel A, El-Nour KMA, Ammar RA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian J Chem 5:1–23CrossRef Aqel A, El-Nour KMA, Ammar RA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian J Chem 5:1–23CrossRef
19.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
20.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRef
21.
Zurück zum Zitat Ren Z, Huang Z, Xu J, Wang J, Bush P, Siegal M et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107CrossRef Ren Z, Huang Z, Xu J, Wang J, Bush P, Siegal M et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107CrossRef
22.
Zurück zum Zitat Thess A, Lee R, Nikolaev P, Dai H (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483CrossRef Thess A, Lee R, Nikolaev P, Dai H (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483CrossRef
23.
Zurück zum Zitat Kukovitskii E, Chernozatonskii L, L’vov S, Mel’nik N (1997) Carbon nanotubes of polyethylene. Chem Phys Lett 266:323–328CrossRef Kukovitskii E, Chernozatonskii L, L’vov S, Mel’nik N (1997) Carbon nanotubes of polyethylene. Chem Phys Lett 266:323–328CrossRef
24.
Zurück zum Zitat Hsu W, Terrones M, Hare J, Terrones H, Kroto H, Walton D (1996) Electrolytic formation of carbon nanostructures. Chem Phys Lett 262:161–166CrossRef Hsu W, Terrones M, Hare J, Terrones H, Kroto H, Walton D (1996) Electrolytic formation of carbon nanostructures. Chem Phys Lett 262:161–166CrossRef
25.
Zurück zum Zitat Richter H, Hernadi K, Caudano R, Fonseca A, Migeon H-N, Nagy JB et al (1996) Formation of nanotubes in low pressure hydrocarbon flames. Carbon 34:427–429CrossRef Richter H, Hernadi K, Caudano R, Fonseca A, Migeon H-N, Nagy JB et al (1996) Formation of nanotubes in low pressure hydrocarbon flames. Carbon 34:427–429CrossRef
26.
Zurück zum Zitat Vander Wal RL, Berger GM, Hall LJ (2002) Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J Phys Chem B 106:3564–3567CrossRef Vander Wal RL, Berger GM, Hall LJ (2002) Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J Phys Chem B 106:3564–3567CrossRef
27.
Zurück zum Zitat Vander Wal RL, Ticich TM (2001) Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B 105:10249–10256CrossRef Vander Wal RL, Ticich TM (2001) Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B 105:10249–10256CrossRef
28.
Zurück zum Zitat Chernozatonskii L, Kosakovskaja ZJ, Fedorov E, Panov V (1995) New carbon tubelite-ordered film structure of multilayer nanotubes. Phys Lett A 197:40–46CrossRef Chernozatonskii L, Kosakovskaja ZJ, Fedorov E, Panov V (1995) New carbon tubelite-ordered film structure of multilayer nanotubes. Phys Lett A 197:40–46CrossRef
29.
Zurück zum Zitat Yamamoto K, Koga Y, Fujiwara S, Kubota M (1996) New method of carbon nanotube growth by ion beam irradiation. Appl Phys Lett 69:4174–4175CrossRef Yamamoto K, Koga Y, Fujiwara S, Kubota M (1996) New method of carbon nanotube growth by ion beam irradiation. Appl Phys Lett 69:4174–4175CrossRef
30.
Zurück zum Zitat Kyotani T, L-f Tsai, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8:2109–2113CrossRef Kyotani T, L-f Tsai, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8:2109–2113CrossRef
31.
Zurück zum Zitat Laplaze D, Bernier P, Maser W, Flamant G, Guillard T, Loiseau A (1998) Carbon nanotubes: the solar approach. Carbon 36:685–688CrossRef Laplaze D, Bernier P, Maser W, Flamant G, Guillard T, Loiseau A (1998) Carbon nanotubes: the solar approach. Carbon 36:685–688CrossRef
32.
Zurück zum Zitat Liu S, Tang Z-R, Sun Y, Colmenares JC, Xu Y-J (2015) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075CrossRef Liu S, Tang Z-R, Sun Y, Colmenares JC, Xu Y-J (2015) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075CrossRef
33.
Zurück zum Zitat Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831CrossRef Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831CrossRef
34.
Zurück zum Zitat Jiang Z, Zhang H, Han J, Liu Z, Liu Y, Tang L (2016) Percolation model of reinforcement efficiency for carbon nanotubes dispersed in thermoplastics. Compos Part A Appl Sci Manuf 86:49–56CrossRef Jiang Z, Zhang H, Han J, Liu Z, Liu Y, Tang L (2016) Percolation model of reinforcement efficiency for carbon nanotubes dispersed in thermoplastics. Compos Part A Appl Sci Manuf 86:49–56CrossRef
35.
Zurück zum Zitat Son D, Koo JH, Song J-K, Kim J, Lee M, Shim HJ et al (2015) Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. ACS Nano 9:5585–5593CrossRef Son D, Koo JH, Song J-K, Kim J, Lee M, Shim HJ et al (2015) Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. ACS Nano 9:5585–5593CrossRef
36.
37.
Zurück zum Zitat Planeix J, Coustel N, Coq B, Brotons V, Kumbhar P, Dutartre R et al (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936CrossRef Planeix J, Coustel N, Coq B, Brotons V, Kumbhar P, Dutartre R et al (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935–7936CrossRef
38.
Zurück zum Zitat Cargnello M, Grzelczak M, Rodríguez-González B, Syrgiannis Z, Bakhmutsky K, La Parola V et al (2012) Multiwalled carbon nanotubes drive the activity of metal@ oxide core–shell catalysts in modular nanocomposites. J Am Chem Soc 134:11760–11766CrossRef Cargnello M, Grzelczak M, Rodríguez-González B, Syrgiannis Z, Bakhmutsky K, La Parola V et al (2012) Multiwalled carbon nanotubes drive the activity of metal@ oxide core–shell catalysts in modular nanocomposites. J Am Chem Soc 134:11760–11766CrossRef
39.
Zurück zum Zitat Lee KM, Li L, Dai L (2005) Asymmetric end-functionalization of multi-walled carbon nanotubes. J Am Chem Soc 127:4122–4123CrossRef Lee KM, Li L, Dai L (2005) Asymmetric end-functionalization of multi-walled carbon nanotubes. J Am Chem Soc 127:4122–4123CrossRef
40.
Zurück zum Zitat Jiang L, Gao L (2003) Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon 41:2923–2929CrossRef Jiang L, Gao L (2003) Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles. Carbon 41:2923–2929CrossRef
41.
Zurück zum Zitat Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958CrossRef Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958CrossRef
42.
Zurück zum Zitat Hirsch A, Vostrowsky O (2007) Functionalization of carbon nanotubes. In: Functional organic materials: syntheses, strategies and applications, pp 1–57 Hirsch A, Vostrowsky O (2007) Functionalization of carbon nanotubes. In: Functional organic materials: syntheses, strategies and applications, pp 1–57
43.
Zurück zum Zitat Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley R (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384CrossRef Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley R (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384CrossRef
44.
Zurück zum Zitat Tsang S, Harris P, Green M (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nat Lond 362:520CrossRef Tsang S, Harris P, Green M (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nat Lond 362:520CrossRef
45.
Zurück zum Zitat Peng Y, Liu H (2006) Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind Eng Chem Res 45:6483–6488CrossRef Peng Y, Liu H (2006) Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind Eng Chem Res 45:6483–6488CrossRef
46.
Zurück zum Zitat Chen C, Liang B, Ogino A, Wang X, Nagatsu M (2009) Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J Phys Chem C 113:7659–7665CrossRef Chen C, Liang B, Ogino A, Wang X, Nagatsu M (2009) Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J Phys Chem C 113:7659–7665CrossRef
47.
Zurück zum Zitat Xia W, Hagen V, Kundu S, Wang Y, Somsen C, Eggeler G et al (2007) Controlled etching of carbon nanotubes by iron-catalyzed steam gasification. Adv Mater 19:3648–3652CrossRef Xia W, Hagen V, Kundu S, Wang Y, Somsen C, Eggeler G et al (2007) Controlled etching of carbon nanotubes by iron-catalyzed steam gasification. Adv Mater 19:3648–3652CrossRef
48.
Zurück zum Zitat Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef
49.
Zurück zum Zitat Santangelo S, Messina G, Faggio G, Abdul Rahim S, Milone C (2012) Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. J Raman Spectrosc 43:1432–1442CrossRef Santangelo S, Messina G, Faggio G, Abdul Rahim S, Milone C (2012) Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. J Raman Spectrosc 43:1432–1442CrossRef
50.
Zurück zum Zitat Ramanathan T, Fisher F, Ruoff R, Brinson L (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290–1295CrossRef Ramanathan T, Fisher F, Ruoff R, Brinson L (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290–1295CrossRef
51.
Zurück zum Zitat Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A Chem 230:97–105CrossRef Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A Chem 230:97–105CrossRef
52.
Zurück zum Zitat Tagmatarchis N, Prato M (2004) Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J Mater Chem 14:437–439CrossRef Tagmatarchis N, Prato M (2004) Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J Mater Chem 14:437–439CrossRef
53.
Zurück zum Zitat Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526CrossRef Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526CrossRef
54.
Zurück zum Zitat Rinzler A, Liu J, Dai H, Nikolaev P, Huffman C, Rodriguez-Macias F et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67:29–37CrossRef Rinzler A, Liu J, Dai H, Nikolaev P, Huffman C, Rodriguez-Macias F et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67:29–37CrossRef
55.
Zurück zum Zitat Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T et al (1998) Fullerene pipes. Science 280:1253–1256CrossRef Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T et al (1998) Fullerene pipes. Science 280:1253–1256CrossRef
56.
Zurück zum Zitat Mahouche Chergui S, Ledebt A, Mammeri F, Herbst F, Carbonnier B, Ben Romdhane H et al (2010) Hairy carbon nanotube@ nano-pd heterostructures: design, characterization, and application in suzuki C–C coupling reaction. Langmuir 26:16115–16121CrossRef Mahouche Chergui S, Ledebt A, Mammeri F, Herbst F, Carbonnier B, Ben Romdhane H et al (2010) Hairy carbon nanotube@ nano-pd heterostructures: design, characterization, and application in suzuki C–C coupling reaction. Langmuir 26:16115–16121CrossRef
57.
Zurück zum Zitat Zhang Y, He H, Gao C (2008) Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes. Macromolecules 41:9581–9594CrossRef Zhang Y, He H, Gao C (2008) Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes. Macromolecules 41:9581–9594CrossRef
58.
Zurück zum Zitat Zhang H, Huang F, Yang C, Liu X, Ren S (2015) Highly dispersed Pd nanoparticles supported on 3-aminopropyltriethoxysilanes modified multiwalled carbon nanotubes for the Heck–Mizoroki reaction. React Kinet Mech Catal 114:489–499CrossRef Zhang H, Huang F, Yang C, Liu X, Ren S (2015) Highly dispersed Pd nanoparticles supported on 3-aminopropyltriethoxysilanes modified multiwalled carbon nanotubes for the Heck–Mizoroki reaction. React Kinet Mech Catal 114:489–499CrossRef
59.
Zurück zum Zitat Giacalone F, Campisciano V, Calabrese C, La Parola V, Syrgiannis Z, Prato M, Gruttadauria M (2016) Single-walled carbon nanotube–polyamidoamine dendrimer hybrids for heterogeneous catalysis. ACS Nano 10:4627–4636CrossRef Giacalone F, Campisciano V, Calabrese C, La Parola V, Syrgiannis Z, Prato M, Gruttadauria M (2016) Single-walled carbon nanotube–polyamidoamine dendrimer hybrids for heterogeneous catalysis. ACS Nano 10:4627–4636CrossRef
60.
Zurück zum Zitat Nabid MR, Bide Y, Rezaei SJT (2011) Pd nanoparticles immobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclable catalyst for Mizoraki–Heck cross-coupling reactions. Appl Catal A Gen 406:124–132CrossRef Nabid MR, Bide Y, Rezaei SJT (2011) Pd nanoparticles immobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclable catalyst for Mizoraki–Heck cross-coupling reactions. Appl Catal A Gen 406:124–132CrossRef
61.
Zurück zum Zitat Qian Z, Ma J, Zhou J, Lin P, Chen C, Chen J et al (2012) Facile synthesis of halogenated multi-walled carbon nanotubes and their unusual photoluminescence. J Mater Chem 22:22113–22119CrossRef Qian Z, Ma J, Zhou J, Lin P, Chen C, Chen J et al (2012) Facile synthesis of halogenated multi-walled carbon nanotubes and their unusual photoluminescence. J Mater Chem 22:22113–22119CrossRef
62.
Zurück zum Zitat Dettlaff-Weglikowska U, Skakalova V, Graupner R, Jhang SH, Kim BH, Lee HJ et al (2005) Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127:5125–5131CrossRef Dettlaff-Weglikowska U, Skakalova V, Graupner R, Jhang SH, Kim BH, Lee HJ et al (2005) Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127:5125–5131CrossRef
63.
Zurück zum Zitat Mickelson E, Huffman C, Rinzler A, Smalley R, Hauge R, Margrave J (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188–194CrossRef Mickelson E, Huffman C, Rinzler A, Smalley R, Hauge R, Margrave J (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188–194CrossRef
64.
Zurück zum Zitat Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W (2002) Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr Appl Phys 2:107–111CrossRef Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W (2002) Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr Appl Phys 2:107–111CrossRef
65.
Zurück zum Zitat Hanelt S, Friedrich JF, Orts-Gil G, Meyer-Plath A (2012) Study of Lewis acid catalyzed chemical bromination and bromoalkylation of multi-walled carbon nanotubes. Carbon 50:1373–1385 Hanelt S, Friedrich JF, Orts-Gil G, Meyer-Plath A (2012) Study of Lewis acid catalyzed chemical bromination and bromoalkylation of multi-walled carbon nanotubes. Carbon 50:1373–1385
66.
Zurück zum Zitat Chiou J-M, Ho C, Chung D (1989) Effect of bromination on the oxidation resistance of pitch-based carbon fibers. Carbon 27:227–231CrossRef Chiou J-M, Ho C, Chung D (1989) Effect of bromination on the oxidation resistance of pitch-based carbon fibers. Carbon 27:227–231CrossRef
67.
Zurück zum Zitat Bulusheva LG, Okotrub AV, Flahaut E, Asanov IP, Gevko PN, Koroteev V et al (2012) Bromination of double-walled carbon nanotubes. Chem Mater 24:2708–2715CrossRef Bulusheva LG, Okotrub AV, Flahaut E, Asanov IP, Gevko PN, Koroteev V et al (2012) Bromination of double-walled carbon nanotubes. Chem Mater 24:2708–2715CrossRef
68.
Zurück zum Zitat Coleman KS, Chakraborty AK, Bailey SR, Sloan J, Alexander M (2007) Iodination of single-walled carbon nanotube. Chem Mater 19:1076–1081CrossRef Coleman KS, Chakraborty AK, Bailey SR, Sloan J, Alexander M (2007) Iodination of single-walled carbon nanotube. Chem Mater 19:1076–1081CrossRef
69.
Zurück zum Zitat Wang Y, Iqbal Z, Mitra S (2006) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128:95–99CrossRef Wang Y, Iqbal Z, Mitra S (2006) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128:95–99CrossRef
70.
Zurück zum Zitat Liang F, Beach JM, Rai PK, Guo W, Hauge RH, Pasquali M et al (2006) Highly exfoliated water-soluble single-walled carbon nanotubes. Chem Mater 18:1520–1524CrossRef Liang F, Beach JM, Rai PK, Guo W, Hauge RH, Pasquali M et al (2006) Highly exfoliated water-soluble single-walled carbon nanotubes. Chem Mater 18:1520–1524CrossRef
71.
Zurück zum Zitat Duesberg GS, Graupner R, Downes P, Minett A, Ley L, Roth S et al (2004) Hydrothermal functionalisation of single-walled carbon nanotubes. Synth Met 142:263–266CrossRef Duesberg GS, Graupner R, Downes P, Minett A, Ley L, Roth S et al (2004) Hydrothermal functionalisation of single-walled carbon nanotubes. Synth Met 142:263–266CrossRef
72.
Zurück zum Zitat Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S et al (2004) A carbon material as a strong protonic acid. Angew Chem Int Ed 43:2955–2958CrossRef Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S et al (2004) A carbon material as a strong protonic acid. Angew Chem Int Ed 43:2955–2958CrossRef
73.
Zurück zum Zitat Wang H, Yu H, Peng F, Lv P (2006) Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts. Electrochem Commun 8:499–504CrossRef Wang H, Yu H, Peng F, Lv P (2006) Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts. Electrochem Commun 8:499–504CrossRef
74.
Zurück zum Zitat Yu H, Jin Y, Li Z, Peng F, Wang H (2008) Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. J Solid State Chem 181:432–438CrossRef Yu H, Jin Y, Li Z, Peng F, Wang H (2008) Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. J Solid State Chem 181:432–438CrossRef
75.
Zurück zum Zitat Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cell using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed Eng 47:2653–2656CrossRef Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cell using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed Eng 47:2653–2656CrossRef
76.
Zurück zum Zitat Peng F, Zhang L, Wang H, Lv P, Yu H (2005) Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon 43:2405–2408CrossRef Peng F, Zhang L, Wang H, Lv P, Yu H (2005) Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon 43:2405–2408CrossRef
77.
Zurück zum Zitat Sun Z-P, Zhang X-G, Liu R-L, Liang Y-Y, Li H-L (2008) A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation. J Power Sources 185:801–806CrossRef Sun Z-P, Zhang X-G, Liu R-L, Liang Y-Y, Li H-L (2008) A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation. J Power Sources 185:801–806CrossRef
78.
Zurück zum Zitat Boehm H, Derincon A, Stohr T, Tereczki B, Vass A (1987) Activation of carbon catalysts for oxidation reactions by treatment with ammonia or hydrogen-cyanide, and possible causes for the loss of activity during catalytic action. J Chim Phys Phys Chim Biol 84:1449–1455 Boehm H, Derincon A, Stohr T, Tereczki B, Vass A (1987) Activation of carbon catalysts for oxidation reactions by treatment with ammonia or hydrogen-cyanide, and possible causes for the loss of activity during catalytic action. J Chim Phys Phys Chim Biol 84:1449–1455
79.
Zurück zum Zitat Choi J, Samayoa IA, Lim S-C, Jo C, Choi YC, Lee YH et al (2002) Band filling and correlation effects in alkali metal doped carbon nanotubes. Phys Lett A 299:601–606CrossRef Choi J, Samayoa IA, Lim S-C, Jo C, Choi YC, Lee YH et al (2002) Band filling and correlation effects in alkali metal doped carbon nanotubes. Phys Lett A 299:601–606CrossRef
80.
Zurück zum Zitat Jin Z, Nie H, Yang Z, Zhang J, Liu Z, Xu X et al (2012) Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4:6455–6460CrossRef Jin Z, Nie H, Yang Z, Zhang J, Liu Z, Xu X et al (2012) Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4:6455–6460CrossRef
81.
Zurück zum Zitat Yu D, Xue Y, Dai L (2012) Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J Phys Chem Lett 3:2863–2870CrossRef Yu D, Xue Y, Dai L (2012) Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J Phys Chem Lett 3:2863–2870CrossRef
82.
Zurück zum Zitat Sumpter BG, Meunier V, Romo-Herrera JM, Cruz-Silva E, Cullen DA, Terrones H et al (2007) Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 1:369–375CrossRef Sumpter BG, Meunier V, Romo-Herrera JM, Cruz-Silva E, Cullen DA, Terrones H et al (2007) Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 1:369–375CrossRef
83.
Zurück zum Zitat Kang HS, Jeong S (2004) Nitrogen doping and chirality of carbon nanotubes. Phys Rev B 70:233411CrossRef Kang HS, Jeong S (2004) Nitrogen doping and chirality of carbon nanotubes. Phys Rev B 70:233411CrossRef
84.
Zurück zum Zitat Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau A et al (2004) Synthesis of N-doped SWCNT using the arc-discharge procedure. Chem Phys Lett 387:193–197CrossRef Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau A et al (2004) Synthesis of N-doped SWCNT using the arc-discharge procedure. Chem Phys Lett 387:193–197CrossRef
85.
Zurück zum Zitat Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T et al (2010) Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal A Gen 380:72–80CrossRef Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T et al (2010) Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal A Gen 380:72–80CrossRef
86.
Zurück zum Zitat Vinayan B, Sethupathi K, Ramaprabhu S (2013) Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int J Hydrog Energy 38:2240–2250CrossRef Vinayan B, Sethupathi K, Ramaprabhu S (2013) Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications. Int J Hydrog Energy 38:2240–2250CrossRef
87.
Zurück zum Zitat Lee YT, Kim NS, Bae SY, Park J, Yu S-C, Ryu H et al (2003) Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100 °C. J Phys Chem B 107:12958–12963CrossRef Lee YT, Kim NS, Bae SY, Park J, Yu S-C, Ryu H et al (2003) Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900–1100 °C. J Phys Chem B 107:12958–12963CrossRef
88.
Zurück zum Zitat Nxumalo EN, Nyamori VO, Coville NJ (2008) CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixture. J Organomet Chem 693:2942–2948CrossRef Nxumalo EN, Nyamori VO, Coville NJ (2008) CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixture. J Organomet Chem 693:2942–2948CrossRef
89.
Zurück zum Zitat Sen R, Satishkumar B, Govindaraj A, Harikumar K, Renganathan M, Rao C (1997) Nitrogen-containing carbon nanotubes. J Mater Chem 7:2335–2337CrossRef Sen R, Satishkumar B, Govindaraj A, Harikumar K, Renganathan M, Rao C (1997) Nitrogen-containing carbon nanotubes. J Mater Chem 7:2335–2337CrossRef
90.
Zurück zum Zitat Trasobares S, Stephan O, Colliex C, Hug G, Hsu W, Kroto H et al (2001) Electron beam puncturing of carbon nanotube containers for release of stored N2 gas. Euro Phys J B Condens Matter Complex Syst 22:117–122 Trasobares S, Stephan O, Colliex C, Hug G, Hsu W, Kroto H et al (2001) Electron beam puncturing of carbon nanotube containers for release of stored N2 gas. Euro Phys J B Condens Matter Complex Syst 22:117–122
91.
Zurück zum Zitat Li Z, Liu J, Huang Z, Yang Y, Xia C, Li F (2013) One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal 3:839–845CrossRef Li Z, Liu J, Huang Z, Yang Y, Xia C, Li F (2013) One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal 3:839–845CrossRef
92.
Zurück zum Zitat Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem Commun 14:1468–1470CrossRef Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem Commun 14:1468–1470CrossRef
93.
Zurück zum Zitat Liu C-H, Li J-J, Zhang H-L, Li B-R, Guo Y (2008) Structure dependent interaction between organic dyes and carbon nanotubes. Colloids Surf A Physicochem Eng Asp 313:9–12CrossRef Liu C-H, Li J-J, Zhang H-L, Li B-R, Guo Y (2008) Structure dependent interaction between organic dyes and carbon nanotubes. Colloids Surf A Physicochem Eng Asp 313:9–12CrossRef
94.
Zurück zum Zitat Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc 124:9034–9035CrossRef Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc 124:9034–9035CrossRef
95.
Zurück zum Zitat Tunckol M, Fantini S, Malbosc F, Durand J, Serp P (2013) Effect of the synthetic strategy on the non-covalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids. Carbon 57:209–216CrossRef Tunckol M, Fantini S, Malbosc F, Durand J, Serp P (2013) Effect of the synthetic strategy on the non-covalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids. Carbon 57:209–216CrossRef
96.
Zurück zum Zitat Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063CrossRef Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063CrossRef
97.
Zurück zum Zitat Zhang A, Tang M, Luan J, Li J (2012) Noncovalent functionalization of multi-walled carbon nanotubes with amphiphilic polymers containing pyrene pendants. Mater Lett 67:283–285CrossRef Zhang A, Tang M, Luan J, Li J (2012) Noncovalent functionalization of multi-walled carbon nanotubes with amphiphilic polymers containing pyrene pendants. Mater Lett 67:283–285CrossRef
98.
Zurück zum Zitat Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef
99.
Zurück zum Zitat Zhang LY, Guo CX, Cui Z, Guo J, Dong Z, Li CM (2012) DNA-directed growth of Pd nanocrystals on carbon nanotubes towards efficient oxygen reduction reactions. Chem A Eur J 18:15693–15698CrossRef Zhang LY, Guo CX, Cui Z, Guo J, Dong Z, Li CM (2012) DNA-directed growth of Pd nanocrystals on carbon nanotubes towards efficient oxygen reduction reactions. Chem A Eur J 18:15693–15698CrossRef
100.
Zurück zum Zitat Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM (2009) Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3:865–870CrossRef Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM (2009) Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. ACS Nano 3:865–870CrossRef
101.
Zurück zum Zitat Zheng M, Li P, Fu G, Chen Y, Zhou Y, Tang Y et al (2013) Efficient anchorage of highly dispersed and ultrafine palladium nanoparticles on the water-soluble phosphonate functionalized multiwall carbon nanotubes. Appl Catal B Environ 129:394–402CrossRef Zheng M, Li P, Fu G, Chen Y, Zhou Y, Tang Y et al (2013) Efficient anchorage of highly dispersed and ultrafine palladium nanoparticles on the water-soluble phosphonate functionalized multiwall carbon nanotubes. Appl Catal B Environ 129:394–402CrossRef
102.
Zurück zum Zitat Wu H, Zhao W, Hu H, Chen G (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632CrossRef Wu H, Zhao W, Hu H, Chen G (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632CrossRef
103.
Zurück zum Zitat Buaki-Sogó M, Vivian A, Bivona L, García H, Gruttadauria M, Aprile C (2016) Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catal Sci Technol 6:8418–8427CrossRef Buaki-Sogó M, Vivian A, Bivona L, García H, Gruttadauria M, Aprile C (2016) Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catal Sci Technol 6:8418–8427CrossRef
104.
Zurück zum Zitat Salvo AMP, La Parola V, Liotta LF, Giacalone F, Gruttadauria M (2016) Highly loaded multi-walled carbon nanotubes non-covalently modified with a bis-imidazolium salt and their use as catalyst supports. ChemPlusChem 81:471–476CrossRef Salvo AMP, La Parola V, Liotta LF, Giacalone F, Gruttadauria M (2016) Highly loaded multi-walled carbon nanotubes non-covalently modified with a bis-imidazolium salt and their use as catalyst supports. ChemPlusChem 81:471–476CrossRef
105.
Zurück zum Zitat Suzuki Y, Laurino P, McQuade DT, Seeberger PH (2012) A capture-and-release catalytic flow system. Helv Chim Acta 95:2578–2588CrossRef Suzuki Y, Laurino P, McQuade DT, Seeberger PH (2012) A capture-and-release catalytic flow system. Helv Chim Acta 95:2578–2588CrossRef
106.
Zurück zum Zitat Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem Commun 35:4435–4437CrossRef Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem Commun 35:4435–4437CrossRef
107.
Zurück zum Zitat Villa A, Wang D, Spontoni P, Arrigo R, Su D, Prati L (2010) Nitrogen functionalized carbon nanostructures supported Pd and Au–Pd NPs as catalyst for alcohols oxidation. Catal Today 157:89–93CrossRef Villa A, Wang D, Spontoni P, Arrigo R, Su D, Prati L (2010) Nitrogen functionalized carbon nanostructures supported Pd and Au–Pd NPs as catalyst for alcohols oxidation. Catal Today 157:89–93CrossRef
108.
Zurück zum Zitat Liu JM, Meng H, Jl Li, Liao Sj BuJH (2007) Preparation of high performance Pt/CNT catalysts stabilized by ethylenediaminetetraacetic acid disodium salt. Fuel Cells 7:402–407CrossRef Liu JM, Meng H, Jl Li, Liao Sj BuJH (2007) Preparation of high performance Pt/CNT catalysts stabilized by ethylenediaminetetraacetic acid disodium salt. Fuel Cells 7:402–407CrossRef
109.
Zurück zum Zitat Hou T, Yuan L, Ye T, Gong L, Tu J, Yamamoto M et al (2009) Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. Int J Hydrog Energy 34:9095–9107CrossRef Hou T, Yuan L, Ye T, Gong L, Tu J, Yamamoto M et al (2009) Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. Int J Hydrog Energy 34:9095–9107CrossRef
110.
Zurück zum Zitat Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRef Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRef
111.
Zurück zum Zitat Gu X, Qi W, Xu X, Sun Z, Zhang L, Liu W et al (2014) Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 6:6609–6616CrossRef Gu X, Qi W, Xu X, Sun Z, Zhang L, Liu W et al (2014) Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 6:6609–6616CrossRef
112.
Zurück zum Zitat Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193CrossRef Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193CrossRef
113.
Zurück zum Zitat Lee J, Lee K, Park SS (2016) Environmentally friendly preparation of nanoparticle-decorated carbon nanotube or graphene hybrid structures and their potential applications. J Mater Sci 51:2761–2770CrossRef Lee J, Lee K, Park SS (2016) Environmentally friendly preparation of nanoparticle-decorated carbon nanotube or graphene hybrid structures and their potential applications. J Mater Sci 51:2761–2770CrossRef
114.
Zurück zum Zitat Villa A, Wang D, Dimitratos N, Su D, Trevisan V, Prati L (2010) Pd on carbon nanotubes for liquid phase alcohol oxidation. Catal Today 150:8–15CrossRef Villa A, Wang D, Dimitratos N, Su D, Trevisan V, Prati L (2010) Pd on carbon nanotubes for liquid phase alcohol oxidation. Catal Today 150:8–15CrossRef
115.
Zurück zum Zitat Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4:1948–1963CrossRef Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4:1948–1963CrossRef
116.
Zurück zum Zitat Qiu J, Zhang H, Wang X, Han H, Liang C, Li C (2006) Selective hydrogenation of cinnamaldehyde over carbon nanotube supported Pd–Ru catalyst. React Kinet Catal Lett 88:269–276CrossRef Qiu J, Zhang H, Wang X, Han H, Liang C, Li C (2006) Selective hydrogenation of cinnamaldehyde over carbon nanotube supported Pd–Ru catalyst. React Kinet Catal Lett 88:269–276CrossRef
117.
Zurück zum Zitat Ji X, Banks CE, Holloway AF, Jurkschat K, Thorogood CA, Wildgoose GG et al (2006) Palladium sub-nanoparticle decorated ‘bamboo’multi-walled carbon nanotubes exhibit electrochemical metastability: voltammetric sensing in otherwise inaccessible pH ranges. Electroanalysis 18:2481–2485CrossRef Ji X, Banks CE, Holloway AF, Jurkschat K, Thorogood CA, Wildgoose GG et al (2006) Palladium sub-nanoparticle decorated ‘bamboo’multi-walled carbon nanotubes exhibit electrochemical metastability: voltammetric sensing in otherwise inaccessible pH ranges. Electroanalysis 18:2481–2485CrossRef
118.
Zurück zum Zitat Li X, Niu J, Zhang J, Li H, Liu Z (2003) Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles. J Phys Chem B 107:2453–2458CrossRef Li X, Niu J, Zhang J, Li H, Liu Z (2003) Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles. J Phys Chem B 107:2453–2458CrossRef
119.
Zurück zum Zitat Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K et al (2009) Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources 194:1202–1207CrossRef Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K et al (2009) Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources 194:1202–1207CrossRef
120.
Zurück zum Zitat Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216CrossRef Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216CrossRef
121.
Zurück zum Zitat Yoon B, Wai CM (2005) Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J Am Chem Soc 127:17174–17175CrossRef Yoon B, Wai CM (2005) Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J Am Chem Soc 127:17174–17175CrossRef
122.
Zurück zum Zitat Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6:75–90CrossRef Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6:75–90CrossRef
123.
Zurück zum Zitat Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147CrossRef Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147CrossRef
124.
Zurück zum Zitat Laborde H, Leger J, Lamy C (1994) Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part II: platinum-ruthenium in polyaniline. J Appl Electrochem 24:1019–1027 Laborde H, Leger J, Lamy C (1994) Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part II: platinum-ruthenium in polyaniline. J Appl Electrochem 24:1019–1027
125.
Zurück zum Zitat Ebbesen TW, Hiura H, Bisher ME, Treacy MM, Shreeve-Keyer JL, Haushalter RC (1996) Decoration of carbon nanotubes. Adv Mater 8:155–157CrossRef Ebbesen TW, Hiura H, Bisher ME, Treacy MM, Shreeve-Keyer JL, Haushalter RC (1996) Decoration of carbon nanotubes. Adv Mater 8:155–157CrossRef
126.
Zurück zum Zitat Cui S-K, Guo D-J (2009) Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. J Colloid Interface Sci 333:300–303CrossRef Cui S-K, Guo D-J (2009) Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. J Colloid Interface Sci 333:300–303CrossRef
127.
Zurück zum Zitat Tsai M-C, Yeh T-K, Tsai C-H (2008) Electrodeposition of platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloths for methanol oxidation. Mater Chem Phys 109:422–428CrossRef Tsai M-C, Yeh T-K, Tsai C-H (2008) Electrodeposition of platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloths for methanol oxidation. Mater Chem Phys 109:422–428CrossRef
128.
Zurück zum Zitat Schlesinger M, Kisel J (1989) Effect of Sn(II)-based sensitizer adsorption in electroless deposition. J Electrochem Soc 136:1658–1661CrossRef Schlesinger M, Kisel J (1989) Effect of Sn(II)-based sensitizer adsorption in electroless deposition. J Electrochem Soc 136:1658–1661CrossRef
129.
Zurück zum Zitat Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRef Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRef
130.
Zurück zum Zitat Lin K-Y, Tsai W-T, Chang J-K (2010) Decorating carbon nanotubes with Ni particles using an electroless deposition technique for hydrogen storage applications. Int J Hydrog Energy 35:7555–7562CrossRef Lin K-Y, Tsai W-T, Chang J-K (2010) Decorating carbon nanotubes with Ni particles using an electroless deposition technique for hydrogen storage applications. Int J Hydrog Energy 35:7555–7562CrossRef
131.
Zurück zum Zitat Chen X, Hou Y, Wang H, Cao Y, He J (2008) Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. J Phys Chem C 112:8172–8176CrossRef Chen X, Hou Y, Wang H, Cao Y, He J (2008) Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. J Phys Chem C 112:8172–8176CrossRef
132.
Zurück zum Zitat Sokolov V, Rakov E, Bumagin N, Vinogradov M (2010) New method to prepare nanopalladium clusters immobilized on carbon nanotubes: a very efficient catalyst for forming carbon–carbon bonds and hydrogenation. Fuller Nanotubes Carbon Nanostruct 18:558–563CrossRef Sokolov V, Rakov E, Bumagin N, Vinogradov M (2010) New method to prepare nanopalladium clusters immobilized on carbon nanotubes: a very efficient catalyst for forming carbon–carbon bonds and hydrogenation. Fuller Nanotubes Carbon Nanostruct 18:558–563CrossRef
133.
Zurück zum Zitat Li Y, Hu FP, Wang X, Shen PK (2008) Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts. Electrochem Commun 10:1101–1104CrossRef Li Y, Hu FP, Wang X, Shen PK (2008) Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts. Electrochem Commun 10:1101–1104CrossRef
134.
Zurück zum Zitat Xu H, Zeng L, Xing S, Shi G, Xian Y, Jin L (2008) Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). Electrochem Commun 10:1839–1843CrossRef Xu H, Zeng L, Xing S, Shi G, Xian Y, Jin L (2008) Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). Electrochem Commun 10:1839–1843CrossRef
135.
Zurück zum Zitat Lepró X, Terrés E, Vega-Cantú Y, Rodríguez-Macías FJ, Muramatsu H, Kim YA et al (2008) Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chem Phys Lett 463:124–129CrossRef Lepró X, Terrés E, Vega-Cantú Y, Rodríguez-Macías FJ, Muramatsu H, Kim YA et al (2008) Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chem Phys Lett 463:124–129CrossRef
136.
Zurück zum Zitat Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V et al (2009) PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim Acta 54:4208–4215CrossRef Chetty R, Kundu S, Xia W, Bron M, Schuhmann W, Chirila V et al (2009) PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim Acta 54:4208–4215CrossRef
137.
Zurück zum Zitat Jiang S, Zhu L, Ma Y, Wang X, Liu J, Zhu J et al (2010) Direct immobilization of Pt–Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance. J Power Sources 195:7578–7582CrossRef Jiang S, Zhu L, Ma Y, Wang X, Liu J, Zhu J et al (2010) Direct immobilization of Pt–Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance. J Power Sources 195:7578–7582CrossRef
138.
Zurück zum Zitat Vanyorek L, Halasi G, Pekker P, Kristály F, Kónya Z (2016) Characterization and catalytic activity of different carbon supported Pd nanocomposites. Catal Lett 146:2268–2277CrossRef Vanyorek L, Halasi G, Pekker P, Kristály F, Kónya Z (2016) Characterization and catalytic activity of different carbon supported Pd nanocomposites. Catal Lett 146:2268–2277CrossRef
139.
Zurück zum Zitat Kim JY, Jo Y, Lee S, Choi HC (2009) Synthesis of Pd–CNT nanocomposites and investigation of their catalytic behavior in the hydrodehalogenation of aryl halides. Tetrahedron Lett 50:6290–6292CrossRef Kim JY, Jo Y, Lee S, Choi HC (2009) Synthesis of Pd–CNT nanocomposites and investigation of their catalytic behavior in the hydrodehalogenation of aryl halides. Tetrahedron Lett 50:6290–6292CrossRef
140.
Zurück zum Zitat Chen L, Hu G, Zou G, Shao S, Wang X (2009) Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Electrochem Commun 11:504–507CrossRef Chen L, Hu G, Zou G, Shao S, Wang X (2009) Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Electrochem Commun 11:504–507CrossRef
141.
Zurück zum Zitat Lozano P, García-Verdugo E, Bernal JM, Izquierdo DF, Burguete MI, Sánchez-Gómez G et al (2012) Immobilised lipase on structured supports containing covalently attached ionic liquids for the continuous synthesis of biodiesel in scCO2. Chemsuschem 5:790–798CrossRef Lozano P, García-Verdugo E, Bernal JM, Izquierdo DF, Burguete MI, Sánchez-Gómez G et al (2012) Immobilised lipase on structured supports containing covalently attached ionic liquids for the continuous synthesis of biodiesel in scCO2. Chemsuschem 5:790–798CrossRef
142.
Zurück zum Zitat Duan Y, Li J (2004) Structure study of nickel nanoparticles. Mater Chem Phys 87:452–454CrossRef Duan Y, Li J (2004) Structure study of nickel nanoparticles. Mater Chem Phys 87:452–454CrossRef
143.
Zurück zum Zitat Soin N, Roy S, Karlsson L, McLaughlin J (2010) Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diam Relat Mater 19:595–598CrossRef Soin N, Roy S, Karlsson L, McLaughlin J (2010) Sputter deposition of highly dispersed platinum nanoparticles on carbon nanotube arrays for fuel cell electrode material. Diam Relat Mater 19:595–598CrossRef
144.
Zurück zum Zitat Baba K, Kaneko T, Hatakeyama R, Motomiya K, Tohji K (2009) Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields. Chem Commun 46:255–257CrossRef Baba K, Kaneko T, Hatakeyama R, Motomiya K, Tohji K (2009) Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields. Chem Commun 46:255–257CrossRef
145.
Zurück zum Zitat Wang H, Sun X, Ye Y, Qiu S (2006) Radiation induced synthesis of Pt nanoparticles supported on carbon nanotubes. J Power Sources 161:839–842CrossRef Wang H, Sun X, Ye Y, Qiu S (2006) Radiation induced synthesis of Pt nanoparticles supported on carbon nanotubes. J Power Sources 161:839–842CrossRef
146.
Zurück zum Zitat Hierso J-C, Feurer R, Kalck P (1998) Platinum, palladium and rhodium complexes as volatile precursors for depositing materials. Coord Chem Rev 178:1811–1834CrossRef Hierso J-C, Feurer R, Kalck P (1998) Platinum, palladium and rhodium complexes as volatile precursors for depositing materials. Coord Chem Rev 178:1811–1834CrossRef
147.
Zurück zum Zitat Jones AC (2002) Molecular design of improved precursors for the MOCVD of electroceramic oxides. J Mater Chem 12:2576–2590CrossRef Jones AC (2002) Molecular design of improved precursors for the MOCVD of electroceramic oxides. J Mater Chem 12:2576–2590CrossRef
148.
Zurück zum Zitat Jones AC, Aspinall HC, Chalker PR, Potter RJ, Kukli K, Rahtu A et al (2004) Some recent developments in the MOCVD and ALD of high-K dielectric oxides. J Mater Chem 14:3101–3112CrossRef Jones AC, Aspinall HC, Chalker PR, Potter RJ, Kukli K, Rahtu A et al (2004) Some recent developments in the MOCVD and ALD of high-K dielectric oxides. J Mater Chem 14:3101–3112CrossRef
149.
Zurück zum Zitat Siamaki AR, Lin Y, Woodberry K, Connell JW, Gupton BF (2013) Palladium nanoparticles supported on carbon nanotubes from solventless preparations: versatile catalysts for ligand-free Suzuki cross coupling reactions. J Mater Chem A 1:12909–12918CrossRef Siamaki AR, Lin Y, Woodberry K, Connell JW, Gupton BF (2013) Palladium nanoparticles supported on carbon nanotubes from solventless preparations: versatile catalysts for ligand-free Suzuki cross coupling reactions. J Mater Chem A 1:12909–12918CrossRef
151.
Zurück zum Zitat Ye X-R, Lin Y, Wang C, Engelhard MH, Wang Y, Wai CM (2004) Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J Mater Chem 14:908–913CrossRef Ye X-R, Lin Y, Wang C, Engelhard MH, Wang Y, Wai CM (2004) Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J Mater Chem 14:908–913CrossRef
152.
Zurück zum Zitat Star A, Joshi V, Skarupo S, Thomas D, Gabriel J-CP (2006) Gas sensor array based on metal-decorated carbon nanotubes. J Phys Chem B 110:21014–21020CrossRef Star A, Joshi V, Skarupo S, Thomas D, Gabriel J-CP (2006) Gas sensor array based on metal-decorated carbon nanotubes. J Phys Chem B 110:21014–21020CrossRef
153.
Zurück zum Zitat Anson A, Lafuente E, Urriolabeitia E, Navarro R, Benito AM, Maser WK et al (2006) Hydrogen capacity of palladium-loaded carbon materials. J Phys Chem B 110:6643–6648CrossRef Anson A, Lafuente E, Urriolabeitia E, Navarro R, Benito AM, Maser WK et al (2006) Hydrogen capacity of palladium-loaded carbon materials. J Phys Chem B 110:6643–6648CrossRef
154.
Zurück zum Zitat Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium—single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280CrossRef Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium—single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280CrossRef
155.
Zurück zum Zitat Xiang RY, Lin Y, Wai CM (2003) Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem Commun 9:642–643 Xiang RY, Lin Y, Wai CM (2003) Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem Commun 9:642–643
156.
Zurück zum Zitat Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G et al (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299CrossRef Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G et al (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299CrossRef
157.
Zurück zum Zitat Pan HB, Yen CH, Yoon B, Sato M, Wai CM (2006) Recyclable and ligandless Suzuki coupling catalyzed by carbon nanotube-supported palladium nanoparticles synthesized in supercritical fluid. Synth Commun 36:3473–3478CrossRef Pan HB, Yen CH, Yoon B, Sato M, Wai CM (2006) Recyclable and ligandless Suzuki coupling catalyzed by carbon nanotube-supported palladium nanoparticles synthesized in supercritical fluid. Synth Commun 36:3473–3478CrossRef
158.
Zurück zum Zitat Zhang A, Dong J, Xu Q, Rhee H, Li X (2004) Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catal Today 93:347–352CrossRef Zhang A, Dong J, Xu Q, Rhee H, Li X (2004) Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catal Today 93:347–352CrossRef
159.
Zurück zum Zitat Zhao J, Zhu M, Zheng M, Tang Y, Chen Y, Lu T (2011) Electrocatalytic oxidation and detection of hydrazine at carbon nanotube-supported palladium nanoparticles in strong acidic solution conditions. Electrochim Acta 56:4930–4936CrossRef Zhao J, Zhu M, Zheng M, Tang Y, Chen Y, Lu T (2011) Electrocatalytic oxidation and detection of hydrazine at carbon nanotube-supported palladium nanoparticles in strong acidic solution conditions. Electrochim Acta 56:4930–4936CrossRef
160.
Zurück zum Zitat Ohtaka A, Sansano JM, Nájera C, Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D (2015) Palladium and bimetallic palladium–nickel nanoparticles supported on multiwalled carbon nanotubes: application to carbon–carbon bond-forming reactions in water. ChemCatChem 7:1841–1847CrossRef Ohtaka A, Sansano JM, Nájera C, Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D (2015) Palladium and bimetallic palladium–nickel nanoparticles supported on multiwalled carbon nanotubes: application to carbon–carbon bond-forming reactions in water. ChemCatChem 7:1841–1847CrossRef
161.
Zurück zum Zitat Winjobi O, Zhang Z, Liang C, Li W (2010) Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim Acta 55:4217–4221CrossRef Winjobi O, Zhang Z, Liang C, Li W (2010) Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim Acta 55:4217–4221CrossRef
162.
Zurück zum Zitat Suzuki A (1999) Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J Organomet Chem 576:147–168CrossRef Suzuki A (1999) Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J Organomet Chem 576:147–168CrossRef
163.
Zurück zum Zitat Knowles JP, Whiting A (2007) The Heck–Mizoroki cross-coupling reaction: a mechanistic perspective. Org Biomol Chem 5:31–44CrossRef Knowles JP, Whiting A (2007) The Heck–Mizoroki cross-coupling reaction: a mechanistic perspective. Org Biomol Chem 5:31–44CrossRef
164.
Zurück zum Zitat Dieck H, Heck R-F (1974) Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions. J Am Chem Soc 96:1133–1136CrossRef Dieck H, Heck R-F (1974) Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions. J Am Chem Soc 96:1133–1136CrossRef
165.
Zurück zum Zitat Zhang P-P, Zhang X-X, Sun H-X, Liu R-H, Wang B, Lin Y-H (2009) Pd–CNT-catalyzed ligandless and additive-free heterogeneous Suzuki–Miyaura cross-coupling of arylbromides. Tetrahedron Lett 50:4455–4458CrossRef Zhang P-P, Zhang X-X, Sun H-X, Liu R-H, Wang B, Lin Y-H (2009) Pd–CNT-catalyzed ligandless and additive-free heterogeneous Suzuki–Miyaura cross-coupling of arylbromides. Tetrahedron Lett 50:4455–4458CrossRef
166.
Zurück zum Zitat Zhang H, Kwong FY, Tian Y, Chan KS (1998) Base and cation effects on the Suzuki cross-coupling of bulky arylboronic acid with halopyridines: synthesis of pyridylphenols. J Org Chem 63:6886–6890CrossRef Zhang H, Kwong FY, Tian Y, Chan KS (1998) Base and cation effects on the Suzuki cross-coupling of bulky arylboronic acid with halopyridines: synthesis of pyridylphenols. J Org Chem 63:6886–6890CrossRef
167.
Zurück zum Zitat Adib M, Karimi-Nami R, Veisi H (2016) Palladium NPs supported on novel imino-pyridine-functionalized MWCNTs: efficient and highly reusable catalysts for the Suzuki–Miyaura and Sonogashira coupling reactions. New J Chem 40:4945–4951CrossRef Adib M, Karimi-Nami R, Veisi H (2016) Palladium NPs supported on novel imino-pyridine-functionalized MWCNTs: efficient and highly reusable catalysts for the Suzuki–Miyaura and Sonogashira coupling reactions. New J Chem 40:4945–4951CrossRef
168.
Zurück zum Zitat LeBlond CR, Andrews AT, Sun Y, Sowa JR (2001) Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium. Org Lett 3:1555–1557CrossRef LeBlond CR, Andrews AT, Sun Y, Sowa JR (2001) Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium. Org Lett 3:1555–1557CrossRef
169.
Zurück zum Zitat Zhang L, Dong W-H, Shang N-Z, Feng C, Gao S-T, Wang C (2015) N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction. Chin Chem Lett 27:149–154CrossRef Zhang L, Dong W-H, Shang N-Z, Feng C, Gao S-T, Wang C (2015) N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction. Chin Chem Lett 27:149–154CrossRef
170.
Zurück zum Zitat Veisi H, Khazaei A, Safaei M, Kordestani D (2014) Synthesis of biguanide-functionalized single-walled carbon nanotubes (SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for Suzuki–Miyaura coupling reaction. J Mol Catal A Chem 382:106–113CrossRef Veisi H, Khazaei A, Safaei M, Kordestani D (2014) Synthesis of biguanide-functionalized single-walled carbon nanotubes (SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for Suzuki–Miyaura coupling reaction. J Mol Catal A Chem 382:106–113CrossRef
171.
Zurück zum Zitat Budroni G, Corma A, García H, Primo A (2007) Pd nanoparticles embedded in sponge-like porous silica as a Suzuki–Miyaura catalyst: similarities and differences with homogeneous catalysts. J Catal 251:345–353CrossRef Budroni G, Corma A, García H, Primo A (2007) Pd nanoparticles embedded in sponge-like porous silica as a Suzuki–Miyaura catalyst: similarities and differences with homogeneous catalysts. J Catal 251:345–353CrossRef
172.
Zurück zum Zitat Richardson JM, Jones CW (2006) Poly(4-vinylpyridine) and Quadrapure TU as selective poisons for soluble catalytic species in palladium-catalyzed coupling reactions–application to leaching from polymer-entrapped palladium. Adv Synth Catal 348:1207–1216CrossRef Richardson JM, Jones CW (2006) Poly(4-vinylpyridine) and Quadrapure TU as selective poisons for soluble catalytic species in palladium-catalyzed coupling reactions–application to leaching from polymer-entrapped palladium. Adv Synth Catal 348:1207–1216CrossRef
173.
Zurück zum Zitat Weck M, Jones CW (2007) Mizoroki–Heck coupling using immobilized molecular precatalysts: leaching active species from Pd pincers, entrapped Pd salts, and Pd NHC complexes. Inorg Chem 46:1865–1875CrossRef Weck M, Jones CW (2007) Mizoroki–Heck coupling using immobilized molecular precatalysts: leaching active species from Pd pincers, entrapped Pd salts, and Pd NHC complexes. Inorg Chem 46:1865–1875CrossRef
174.
Zurück zum Zitat Navidi M, Rezaei N, Movassagh B (2013) Palladium(II)–Schiff base complex supported on multi-walled carbon nanotubes: a heterogeneous and reusable catalyst in the Suzuki–Miyaura and copper-free Sonogashira–Hagihara reactions. J Organomet Chem 743:63–69CrossRef Navidi M, Rezaei N, Movassagh B (2013) Palladium(II)–Schiff base complex supported on multi-walled carbon nanotubes: a heterogeneous and reusable catalyst in the Suzuki–Miyaura and copper-free Sonogashira–Hagihara reactions. J Organomet Chem 743:63–69CrossRef
175.
Zurück zum Zitat Durap F, Rakap M, Aydemir M, Özkar S (2010) Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium (0) nanoclusters as efficient and recyclable catalyst. Appl Catal A Gen 382:339–344CrossRef Durap F, Rakap M, Aydemir M, Özkar S (2010) Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium (0) nanoclusters as efficient and recyclable catalyst. Appl Catal A Gen 382:339–344CrossRef
176.
Zurück zum Zitat Zhang L, Feng C, Gao S, Wang Z, Wang C (2015) Palladium nanoparticle supported on metal–organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction. Catal Commun 61:21–25CrossRef Zhang L, Feng C, Gao S, Wang Z, Wang C (2015) Palladium nanoparticle supported on metal–organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction. Catal Commun 61:21–25CrossRef
177.
Zurück zum Zitat Sullivan JA, Flanagan KA, Hain H (2009) Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal Today 145:108–113CrossRef Sullivan JA, Flanagan KA, Hain H (2009) Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal Today 145:108–113CrossRef
178.
Zurück zum Zitat Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V, Li H et al (2015) Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst. Catal Sci Technol 5:2388–2392CrossRef Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V, Li H et al (2015) Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst. Catal Sci Technol 5:2388–2392CrossRef
179.
Zurück zum Zitat Tagata T, Nishida M (2003) Palladium charcoal-catalyzed Suzuki–Miyaura coupling to obtain arylpyridines and arylquinolines. J Org Chem 68:9412–9415CrossRef Tagata T, Nishida M (2003) Palladium charcoal-catalyzed Suzuki–Miyaura coupling to obtain arylpyridines and arylquinolines. J Org Chem 68:9412–9415CrossRef
180.
Zurück zum Zitat Radtke M, Stumpf S, Schröter B, Höppener S, Schubert US, Ignaszak A (2015) Electrodeposited palladium on MWCNTs as ‘semi-soluble heterogeneous’ catalyst for cross-coupling reactions. Tetrahedron Lett 56:4084–4087CrossRef Radtke M, Stumpf S, Schröter B, Höppener S, Schubert US, Ignaszak A (2015) Electrodeposited palladium on MWCNTs as ‘semi-soluble heterogeneous’ catalyst for cross-coupling reactions. Tetrahedron Lett 56:4084–4087CrossRef
181.
Zurück zum Zitat Hajipour AR, Khorsandi Z (2016) Immobilized Pd on (S)-methyl histidinate-modified multi-walled carbon nanotubes: a powerful and recyclable catalyst for Mizoroki–Heck and Suzuki–Miyaura C–C cross-coupling reactions in green solvents and under mild conditions. Appl Organomet Chem 5:256–261CrossRef Hajipour AR, Khorsandi Z (2016) Immobilized Pd on (S)-methyl histidinate-modified multi-walled carbon nanotubes: a powerful and recyclable catalyst for Mizoroki–Heck and Suzuki–Miyaura C–C cross-coupling reactions in green solvents and under mild conditions. Appl Organomet Chem 5:256–261CrossRef
182.
Zurück zum Zitat Köhler K, Heidenreich RG, Krauter JG, Pietsch J (2002) Highly active palladium/activated carbon catalysts for Heck reactions: correlation of activity, catalyst properties, and Pd leaching. Chem A Eur J 8:622–631CrossRef Köhler K, Heidenreich RG, Krauter JG, Pietsch J (2002) Highly active palladium/activated carbon catalysts for Heck reactions: correlation of activity, catalyst properties, and Pd leaching. Chem A Eur J 8:622–631CrossRef
183.
Zurück zum Zitat Carino EV, Knecht MR, Crooks RM (2009) Quantitative analysis of the stability of Pd dendrimer-encapsulated nanoparticles. Langmuir 25:10279–10284CrossRef Carino EV, Knecht MR, Crooks RM (2009) Quantitative analysis of the stability of Pd dendrimer-encapsulated nanoparticles. Langmuir 25:10279–10284CrossRef
184.
Zurück zum Zitat Davies IW, Matty L, Hughes DL, Reider PJ (2001) Are heterogeneous catalysts precursors to homogeneous catalysts? J Am Chem Soc 123:10139–10140CrossRef Davies IW, Matty L, Hughes DL, Reider PJ (2001) Are heterogeneous catalysts precursors to homogeneous catalysts? J Am Chem Soc 123:10139–10140CrossRef
185.
Zurück zum Zitat Thathagar MB, ten Elshof JE, Rothenberg G (2006) Pd nanoclusters in C–C coupling reactions: proof of leaching. Angew Chem Int Ed 45:2886–2890CrossRef Thathagar MB, ten Elshof JE, Rothenberg G (2006) Pd nanoclusters in C–C coupling reactions: proof of leaching. Angew Chem Int Ed 45:2886–2890CrossRef
186.
Zurück zum Zitat Zhang H, Lancelot C, Chu W, Hong J, Khodakov AY, Chernavskii PA et al (2009) The nature of cobalt species in carbon nanotubes and their catalytic performance in Fischer–Tropsch reaction. J Mater Chem 19:9241–9249CrossRef Zhang H, Lancelot C, Chu W, Hong J, Khodakov AY, Chernavskii PA et al (2009) The nature of cobalt species in carbon nanotubes and their catalytic performance in Fischer–Tropsch reaction. J Mater Chem 19:9241–9249CrossRef
187.
Zurück zum Zitat Cornelio B, Saunders AR, Solomonsz WA, Laronze-Cochard M, Fontana A, Sapi J et al (2015) Palladium nanoparticles in catalytic carbon nanoreactors: the effect of confinement on Suzuki–Miyaura reactions. J Mater Chem A 3:3918–3927CrossRef Cornelio B, Saunders AR, Solomonsz WA, Laronze-Cochard M, Fontana A, Sapi J et al (2015) Palladium nanoparticles in catalytic carbon nanoreactors: the effect of confinement on Suzuki–Miyaura reactions. J Mater Chem A 3:3918–3927CrossRef
188.
Zurück zum Zitat Eder D (2010) Carbon nanotube–inorganic hybrids. Chem Rev 110:1348–1385CrossRef Eder D (2010) Carbon nanotube–inorganic hybrids. Chem Rev 110:1348–1385CrossRef
189.
Zurück zum Zitat Heidenreich RG, Koehler K, Krauter JG, Pietsch J (2002) Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira reactions. Synlett 33:1118–1122CrossRef Heidenreich RG, Koehler K, Krauter JG, Pietsch J (2002) Pd/C as a highly active catalyst for Heck, Suzuki and Sonogashira reactions. Synlett 33:1118–1122CrossRef
190.
Zurück zum Zitat Organ MG, Mayer S (2003) Synthesis of 4-(5-iodo-3-methylpyrazolyl) phenylsulfonamide and its elaboration to a COX II inhibitor library by solution-phase Suzuki coupling using Pd/C as a solid-supported catalyst. J Comb Chem 5:118–124CrossRef Organ MG, Mayer S (2003) Synthesis of 4-(5-iodo-3-methylpyrazolyl) phenylsulfonamide and its elaboration to a COX II inhibitor library by solution-phase Suzuki coupling using Pd/C as a solid-supported catalyst. J Comb Chem 5:118–124CrossRef
191.
Zurück zum Zitat Movahed SK, Dabiri M, Bazgir A (2014) Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki–Miyaura and Ullmann-type coupling reactions in aqueous media. Appl Catal A Gen 488:265–274CrossRef Movahed SK, Dabiri M, Bazgir A (2014) Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki–Miyaura and Ullmann-type coupling reactions in aqueous media. Appl Catal A Gen 488:265–274CrossRef
192.
Zurück zum Zitat Ghorbani-Vaghei R, Hemmati S, Hashemi M, Veisi H (2015) Diethylenetriamine-functionalized single-walled carbon nanotubes (SWCNTs) to immobilization palladium as a novel recyclable heterogeneous nanocatalyst for the Suzuki–Miyaura coupling reaction in aqueous media. C R Chim 18:636–643CrossRef Ghorbani-Vaghei R, Hemmati S, Hashemi M, Veisi H (2015) Diethylenetriamine-functionalized single-walled carbon nanotubes (SWCNTs) to immobilization palladium as a novel recyclable heterogeneous nanocatalyst for the Suzuki–Miyaura coupling reaction in aqueous media. C R Chim 18:636–643CrossRef
193.
Zurück zum Zitat Zhong L, Chokkalingam A, Cha WS, Lakhi KS, Su X, Lawrence G et al (2015) Pd nanoparticles embedded in mesoporous carbon: a highly efficient catalyst for Suzuki–Miyaura reaction. Catal Today 243:195–198CrossRef Zhong L, Chokkalingam A, Cha WS, Lakhi KS, Su X, Lawrence G et al (2015) Pd nanoparticles embedded in mesoporous carbon: a highly efficient catalyst for Suzuki–Miyaura reaction. Catal Today 243:195–198CrossRef
194.
Zurück zum Zitat Hussain N, Borah A, Darabdhara G, Gogoi P, Azhagan VK, Shelke MV et al (2015) A green approach for the decoration of Pd nanoparticles on graphene nanosheets: an in situ process for the reduction of C–C double bonds and a reusable catalyst for the Suzuki cross-coupling reaction. New J Chem 39:6631–6641CrossRef Hussain N, Borah A, Darabdhara G, Gogoi P, Azhagan VK, Shelke MV et al (2015) A green approach for the decoration of Pd nanoparticles on graphene nanosheets: an in situ process for the reduction of C–C double bonds and a reusable catalyst for the Suzuki cross-coupling reaction. New J Chem 39:6631–6641CrossRef
195.
Zurück zum Zitat Singh AS, Patil UB, Nagarkar JM (2013) Palladium supported on zinc ferrite: a highly active, magnetically separable catalyst for ligand free Suzuki and Heck coupling. Catal Commun 35:11–16CrossRef Singh AS, Patil UB, Nagarkar JM (2013) Palladium supported on zinc ferrite: a highly active, magnetically separable catalyst for ligand free Suzuki and Heck coupling. Catal Commun 35:11–16CrossRef
196.
Zurück zum Zitat Kryukov AY, Davydov SY, Izvol’skii IM, Rakov EG, Abramova NV, Sokolov VI (2012) Palladium supported on graphene-like carbon: preparation and catalytic properties. Mendeleev Commun 22:237–238CrossRef Kryukov AY, Davydov SY, Izvol’skii IM, Rakov EG, Abramova NV, Sokolov VI (2012) Palladium supported on graphene-like carbon: preparation and catalytic properties. Mendeleev Commun 22:237–238CrossRef
197.
Zurück zum Zitat Yuan H, Liu H, Zhang B, Zhang L, Wang H, Su DS (2014) A Pd/CNT–SiC monolith as a robust catalyst for Suzuki coupling reactions. Phys Chem Chem Phys 16:11178–11181CrossRef Yuan H, Liu H, Zhang B, Zhang L, Wang H, Su DS (2014) A Pd/CNT–SiC monolith as a robust catalyst for Suzuki coupling reactions. Phys Chem Chem Phys 16:11178–11181CrossRef
198.
Zurück zum Zitat Makhubela BC, Jardine A, Smith GS (2011) Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki–Miyaura and Heck cross-coupling reactions. Appl Catal A Gen 393:231–241CrossRef Makhubela BC, Jardine A, Smith GS (2011) Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki–Miyaura and Heck cross-coupling reactions. Appl Catal A Gen 393:231–241CrossRef
199.
Zurück zum Zitat Ay AN, Abramova NV, Konuk D, Lependina OL, Sokolov VI, Zümreoglu-Karan B (2013) Magnetically-recoverable Pd-immobilized layered double hydroxide–iron oxide nanocomposite catalyst for carbon–carbon cross-coupling reactions. Inorg Chem Commun 27:64–68CrossRef Ay AN, Abramova NV, Konuk D, Lependina OL, Sokolov VI, Zümreoglu-Karan B (2013) Magnetically-recoverable Pd-immobilized layered double hydroxide–iron oxide nanocomposite catalyst for carbon–carbon cross-coupling reactions. Inorg Chem Commun 27:64–68CrossRef
200.
Zurück zum Zitat Chen F, Huang M, Li Y (2014) Synthesis of a novel cellulose microencapsulated palladium nanoparticle and its catalytic activities in Suzuki–Miyaura and Mizoroki–Heck reactions. Ind Eng Chem Res 53:8339–8345CrossRef Chen F, Huang M, Li Y (2014) Synthesis of a novel cellulose microencapsulated palladium nanoparticle and its catalytic activities in Suzuki–Miyaura and Mizoroki–Heck reactions. Ind Eng Chem Res 53:8339–8345CrossRef
201.
Zurück zum Zitat Yang F, Chi C, Dong S, Wang C, Jia X, Ren L et al (2015) Pd/PdO nanoparticles supported on carbon nanotubes: a highly effective catalyst for promoting Suzuki reaction in water. Catal Today 256:186–192CrossRef Yang F, Chi C, Dong S, Wang C, Jia X, Ren L et al (2015) Pd/PdO nanoparticles supported on carbon nanotubes: a highly effective catalyst for promoting Suzuki reaction in water. Catal Today 256:186–192CrossRef
202.
Zurück zum Zitat Kim E, Jeong HS, Kim BM (2014) Studies on the functionalization of MWNTs and their application as a recyclable catalyst for C–C bond coupling reactions. Catal Commun 46:71–74CrossRef Kim E, Jeong HS, Kim BM (2014) Studies on the functionalization of MWNTs and their application as a recyclable catalyst for C–C bond coupling reactions. Catal Commun 46:71–74CrossRef
203.
Zurück zum Zitat H-q Song, Zhu Q, X-j Zheng, X-g Chen (2015) One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J Mater Chem A 3:10368–10377CrossRef H-q Song, Zhu Q, X-j Zheng, X-g Chen (2015) One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J Mater Chem A 3:10368–10377CrossRef
204.
Zurück zum Zitat Shiri L, Ghorbani-Choghamarani A, Kazemi M (2016) Sulfides Synthesis: nanocatalysts in C–S cross-coupling reactions. Aust J Chem 69:585–600CrossRef Shiri L, Ghorbani-Choghamarani A, Kazemi M (2016) Sulfides Synthesis: nanocatalysts in C–S cross-coupling reactions. Aust J Chem 69:585–600CrossRef
205.
Zurück zum Zitat Taladriz-Blanco P, Hervés P, Pérez-Juste J (2013) Supported Pd nanoparticles for carbon–carbon coupling reactions. Top Catal 56:1154–1170CrossRef Taladriz-Blanco P, Hervés P, Pérez-Juste J (2013) Supported Pd nanoparticles for carbon–carbon coupling reactions. Top Catal 56:1154–1170CrossRef
206.
Zurück zum Zitat Eremin DB, Ananikov VP (2017) Understanding active species in catalytic transformations: from molecular catalysis to nanoparticles, leaching, “cocktails” of catalysts and dynamic systems. Coord Chem Rev. doi:10.1016/J.CCR.2016.12.021 Eremin DB, Ananikov VP (2017) Understanding active species in catalytic transformations: from molecular catalysis to nanoparticles, leaching, “cocktails” of catalysts and dynamic systems. Coord Chem Rev. doi:10.​1016/​J.​CCR.​2016.​12.​021
Metadaten
Titel
Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions
verfasst von
Ayomide H. Labulo
Bice S. Martincigh
Bernard Omondi
Vincent O. Nyamori
Publikationsdatum
28.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1128-0

Weitere Artikel der Ausgabe 16/2017

Journal of Materials Science 16/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.