Skip to main content
Erschienen in: Archive of Applied Mechanics 12/2023

20.10.2023 | Original

Advective flow in a magnetized layer of fluid between hydro-thermal slippery parallel walls

verfasst von: Mustafa Turkyilmazoglu

Erschienen in: Archive of Applied Mechanics | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes full solutions of the energy and Navier–Stokes equations in the approximate form of Boussinesq. The advective fluid layer flowing within parallel horizontal infinite walls subject to hydro-thermal slip conditions is of the prime interest. The control of the momentum/thermal motion is undertaken by a vertically applied magnetic field towards the parallel walls. The response of the layer to the momentum slip and thermal jump conditions under the applied magnetic field is investigated through solving exactly the idealized system of equations. From the obtained closed-form formulae, behaviour of the velocity and temperature fields as well as the rigid/free and thermally conducting/insulating wall cases is easy to gain. Results clearly imply that hydro-thermal slip enhances both velocity and temperature fields, unlike the suppression effects of magnetic field. Full solutions as presented here can serve as good basic flow for further research including the linear/nonlinear stability issues in regard to the plane or spiral perturbations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hudoba, A., Molokov, S., Aleksandrova, S., Pedcenko, A.: Linear stability of buoyant convection in a horizontal layer of an electrically conducting fluid in moderate and high vertical magnetic field. Phys. Fluids 28, 094104 (2016)CrossRef Hudoba, A., Molokov, S., Aleksandrova, S., Pedcenko, A.: Linear stability of buoyant convection in a horizontal layer of an electrically conducting fluid in moderate and high vertical magnetic field. Phys. Fluids 28, 094104 (2016)CrossRef
2.
Zurück zum Zitat Qin, T., Tukovic, Z., Grigoriev, R.O.: Buoyancy-thermocapillary convection of volatile fluids under atmospheric conditions. Int. J. Heat Mass Transf. 75, 284–301 (2014)CrossRef Qin, T., Tukovic, Z., Grigoriev, R.O.: Buoyancy-thermocapillary convection of volatile fluids under atmospheric conditions. Int. J. Heat Mass Transf. 75, 284–301 (2014)CrossRef
3.
Zurück zum Zitat Biagioli, E., Vitturi, M.D.M., Di Benedetto, F.: Modified shallow water model for viscous fluids and positivity preserving numerical approximation. Appl. Math. Model. 94, 482–505 (2021)MathSciNetCrossRefMATH Biagioli, E., Vitturi, M.D.M., Di Benedetto, F.: Modified shallow water model for viscous fluids and positivity preserving numerical approximation. Appl. Math. Model. 94, 482–505 (2021)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Gershuni, G.Z., Zhukhovitskii, M.E.: Plane-parallel advective flows in vibrational field. Eng. Phys. J. 56, 238–242 (1989)CrossRef Gershuni, G.Z., Zhukhovitskii, M.E.: Plane-parallel advective flows in vibrational field. Eng. Phys. J. 56, 238–242 (1989)CrossRef
6.
Zurück zum Zitat Birikh, R.V.: Vibrational convection in a plane layer with the longitudinal temperature gradient. Fluid Dyn. 25, 500–503 (1990)CrossRef Birikh, R.V.: Vibrational convection in a plane layer with the longitudinal temperature gradient. Fluid Dyn. 25, 500–503 (1990)CrossRef
7.
Zurück zum Zitat Aleksandrova, S., Molokov, S.: Three-dimensional buoyant convection in a rectangular cavity with differentially heated walls in a strong magnetic field. Fluid Dyn. Res. 35, 37–66 (2004)CrossRefMATH Aleksandrova, S., Molokov, S.: Three-dimensional buoyant convection in a rectangular cavity with differentially heated walls in a strong magnetic field. Fluid Dyn. Res. 35, 37–66 (2004)CrossRefMATH
8.
Zurück zum Zitat Garandet, J., Alboussiere, T., Moreau, R.: Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass Transf. 35, 741–748 (1992)CrossRefMATH Garandet, J., Alboussiere, T., Moreau, R.: Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass Transf. 35, 741–748 (1992)CrossRefMATH
9.
Zurück zum Zitat Kaddeche, S., Hendry, D., Benhadid, H.: Magnetic stabilization of the buoyant convection between infinite horizontal walls with a horizontal temperature gradient. J. Fluid Mech. 480, 185–216 (2003)MathSciNetCrossRefMATH Kaddeche, S., Hendry, D., Benhadid, H.: Magnetic stabilization of the buoyant convection between infinite horizontal walls with a horizontal temperature gradient. J. Fluid Mech. 480, 185–216 (2003)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Pukhnachev, V.V.: Unsteady counterparts of the Birikh solutions. Izv. Alt. Gos. Univ. Nos. 1–2, 62–69 (2011) Pukhnachev, V.V.: Unsteady counterparts of the Birikh solutions. Izv. Alt. Gos. Univ. Nos. 1–2, 62–69 (2011)
11.
Zurück zum Zitat Aristov, S.N., Shvarts, K.G.: Convective heat transfer in a locally heated plane incompressible fluid layer. Fluid Dyn. 48, 330–335 (2013)MathSciNetCrossRefMATH Aristov, S.N., Shvarts, K.G.: Convective heat transfer in a locally heated plane incompressible fluid layer. Fluid Dyn. 48, 330–335 (2013)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Schwarz, E.G.: Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries. Fluid Dyn. 49, 438–442 (2014)MathSciNetCrossRefMATH Schwarz, E.G.: Plane-parallel advective flow in a horizontal incompressible fluid layer with rigid boundaries. Fluid Dyn. 49, 438–442 (2014)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Aristov, S.N., Shvarts, K.G.: Advective flow in a rotating liquid film. Zh. Prikl. Mekh. Tekh. Fiz. 57, 188–194 (2016)MathSciNetMATH Aristov, S.N., Shvarts, K.G.: Advective flow in a rotating liquid film. Zh. Prikl. Mekh. Tekh. Fiz. 57, 188–194 (2016)MathSciNetMATH
14.
Zurück zum Zitat Shvarts, K.G.: Advective flow of a rotating fluid layer in a vibrational field. Russ. J. Nonlinear Dyn. 15, 261–270 (2019)MathSciNetMATH Shvarts, K.G.: Advective flow of a rotating fluid layer in a vibrational field. Russ. J. Nonlinear Dyn. 15, 261–270 (2019)MathSciNetMATH
15.
Zurück zum Zitat Sagitov, R.V., Sharifulin, A.N.: Effect of slipping on the bifurcation of convection regimes in a inclined closed cavity. In: Perm Hydrodynamic Workshop: Proceedings of All-Russian Conference with International Participation Devoted to Memory of Profs. G. Z. Gershuni, E. M. Zhukhovitskii, and D. V. Lyubimov (2018) Sagitov, R.V., Sharifulin, A.N.: Effect of slipping on the bifurcation of convection regimes in a inclined closed cavity. In: Perm Hydrodynamic Workshop: Proceedings of All-Russian Conference with International Participation Devoted to Memory of Profs. G. Z. Gershuni, E. M. Zhukhovitskii, and D. V. Lyubimov (2018)
16.
Zurück zum Zitat Dubov, A.L., Nizkaya, T.V., Asmolov, E.S., Vinogradova, O.I.: Boundary conditions at the gas sectors of superhydrophobic grooves. Phys. Rev. Fluids 3, 014002 (2018)CrossRef Dubov, A.L., Nizkaya, T.V., Asmolov, E.S., Vinogradova, O.I.: Boundary conditions at the gas sectors of superhydrophobic grooves. Phys. Rev. Fluids 3, 014002 (2018)CrossRef
17.
Zurück zum Zitat Schwarz, K.G., Schwarz, Y.A.: Stability of advective flow in a horizontal incompressible fluid layer in the presence of the Navier slip condition. Fluid Dyn. 55, 31–42 (2020)MathSciNetCrossRefMATH Schwarz, K.G., Schwarz, Y.A.: Stability of advective flow in a horizontal incompressible fluid layer in the presence of the Navier slip condition. Fluid Dyn. 55, 31–42 (2020)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Etzold, M.A., Landel, J.R., Dalziel, S.B.: Three-dimensional advective-diffusive boundary layers in open channels with parallel and inclined walls. Int. J. Heat Mass Transf. 153, 119504 (2020)CrossRef Etzold, M.A., Landel, J.R., Dalziel, S.B.: Three-dimensional advective-diffusive boundary layers in open channels with parallel and inclined walls. Int. J. Heat Mass Transf. 153, 119504 (2020)CrossRef
19.
Zurück zum Zitat Chen, H.-T., Ma, W.-X., Lin, P.-Y.: Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: experimental and numerical study. Int. J. Heat Mass Transf. 147, 118948 (2020)CrossRef Chen, H.-T., Ma, W.-X., Lin, P.-Y.: Natural convection of plate finned tube heat exchangers with two horizontal tubes in a chimney: experimental and numerical study. Int. J. Heat Mass Transf. 147, 118948 (2020)CrossRef
20.
Zurück zum Zitat Konar, D., Sultan, M.A., Roy, S.: Numerical analysis of 2-D laminar natural convection heat transfer from solid horizontal cylinders with longitudinal fins. Int. J. Therm. Sci. 154, 106391 (2020)CrossRef Konar, D., Sultan, M.A., Roy, S.: Numerical analysis of 2-D laminar natural convection heat transfer from solid horizontal cylinders with longitudinal fins. Int. J. Therm. Sci. 154, 106391 (2020)CrossRef
21.
Zurück zum Zitat Nemati, H., Moradaghay, M., Moghimic, M.A., Meyer, J.P.: Natural convection heat transfer over horizontal annular elliptical finned tubes. Int. Commun. Heat Mass Transf. 118, 104823 (2020)CrossRef Nemati, H., Moradaghay, M., Moghimic, M.A., Meyer, J.P.: Natural convection heat transfer over horizontal annular elliptical finned tubes. Int. Commun. Heat Mass Transf. 118, 104823 (2020)CrossRef
22.
Zurück zum Zitat Waqas, M., Gulshan, N., Asghar, Z., Gulzar, M.M., Bilal, M.: Visualization of stratification based Eyring–Powell material flow capturing nonlinear convection effects. J. Therm. Anal. Calorim. 143, 2577–2584 (2021)CrossRef Waqas, M., Gulshan, N., Asghar, Z., Gulzar, M.M., Bilal, M.: Visualization of stratification based Eyring–Powell material flow capturing nonlinear convection effects. J. Therm. Anal. Calorim. 143, 2577–2584 (2021)CrossRef
23.
Zurück zum Zitat Bilal, M., Urva, Y.: Analysis of non-newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy. Arch. Appl. Mech. 91, 1079–1095 (2021)CrossRef Bilal, M., Urva, Y.: Analysis of non-newtonian fluid flow over fine rotating thin needle for variable viscosity and activation energy. Arch. Appl. Mech. 91, 1079–1095 (2021)CrossRef
24.
Zurück zum Zitat Bilal, M., Ramzan, M., Siddique, I., Sajjad, A.: Magneto-micropolar nanofluid flow through the convective permeable channel using Koo–Kleinstreuer–Li model. J. Magn. Magn. Mater. 565, 170288 (2023)CrossRef Bilal, M., Ramzan, M., Siddique, I., Sajjad, A.: Magneto-micropolar nanofluid flow through the convective permeable channel using Koo–Kleinstreuer–Li model. J. Magn. Magn. Mater. 565, 170288 (2023)CrossRef
25.
Zurück zum Zitat Akram, S., Saeed, K., Athar, M., Razia, A., Hussain, A., Naz, I.: Convection theory on thermally radiative peristaltic flow of Prandtl tilted magneto nanofluid in an asymmetric channel with effects of partial slip and viscous dissipation. Mater. Today Commun. 35, 106171 (2023)CrossRef Akram, S., Saeed, K., Athar, M., Razia, A., Hussain, A., Naz, I.: Convection theory on thermally radiative peristaltic flow of Prandtl tilted magneto nanofluid in an asymmetric channel with effects of partial slip and viscous dissipation. Mater. Today Commun. 35, 106171 (2023)CrossRef
26.
Zurück zum Zitat Khan, Y., Athar, M., Akram, S., Saeed, K., Razia, A., Alameer, A.: Roll of partial slip on Ellis nanofluid in the proximity of double diffusion convection and tilted magnetic field: application of Chyme movement. Heliyon 9, e14760 (2023)CrossRef Khan, Y., Athar, M., Akram, S., Saeed, K., Razia, A., Alameer, A.: Roll of partial slip on Ellis nanofluid in the proximity of double diffusion convection and tilted magnetic field: application of Chyme movement. Heliyon 9, e14760 (2023)CrossRef
27.
Zurück zum Zitat Akram, S., Athar, M., Saeed, K., Razia, A.: Theoretical analysis of partial slip on double-diffusion convection of Eyring–Powell nanofluids under the effects of peristaltic propulsion and inclined magnetic field. J. Magn. Magn. Mater. 569, 170445 (2023)CrossRef Akram, S., Athar, M., Saeed, K., Razia, A.: Theoretical analysis of partial slip on double-diffusion convection of Eyring–Powell nanofluids under the effects of peristaltic propulsion and inclined magnetic field. J. Magn. Magn. Mater. 569, 170445 (2023)CrossRef
28.
Zurück zum Zitat Gershuni, G.Z., Zhukhovitskii, E.M., Nepomnyashchii, A.A.: Stability of Convective Flows. Nauka, Moscow (1989) Gershuni, G.Z., Zhukhovitskii, E.M., Nepomnyashchii, A.A.: Stability of Convective Flows. Nauka, Moscow (1989)
29.
Zurück zum Zitat Smith, M.K., Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part I: convective instabilities. J. Fluid Mech. 132, 119 (1983)CrossRefMATH Smith, M.K., Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part I: convective instabilities. J. Fluid Mech. 132, 119 (1983)CrossRefMATH
31.
Zurück zum Zitat Birikh, R.V., Katanova, T.N.: On stabilization of advective flow by transverse vibrations. In: Lyubimov, D.V. (ed.) Vibrational Effects in Hydrodynamics, vol. 1, pp. 25–37. Perm University Press, Perm (1998) Birikh, R.V., Katanova, T.N.: On stabilization of advective flow by transverse vibrations. In: Lyubimov, D.V. (ed.) Vibrational Effects in Hydrodynamics, vol. 1, pp. 25–37. Perm University Press, Perm (1998)
32.
Zurück zum Zitat Hof, B.: A Study of Magnetohydrodynamic Convection in Liquid Gallium. University of Manchester, Manchester (2001) Hof, B.: A Study of Magnetohydrodynamic Convection in Liquid Gallium. University of Manchester, Manchester (2001)
33.
Zurück zum Zitat Shvarts, K.G., Boudlal, A.: Effect of rotation on stability of advective flow in horizontal liquid layer with a free upper boundary. J. Phys. Conf. Ser. 216, 012005 (2010)CrossRef Shvarts, K.G., Boudlal, A.: Effect of rotation on stability of advective flow in horizontal liquid layer with a free upper boundary. J. Phys. Conf. Ser. 216, 012005 (2010)CrossRef
34.
Metadaten
Titel
Advective flow in a magnetized layer of fluid between hydro-thermal slippery parallel walls
verfasst von
Mustafa Turkyilmazoglu
Publikationsdatum
20.10.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 12/2023
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-023-02495-0

Weitere Artikel der Ausgabe 12/2023

Archive of Applied Mechanics 12/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.