Skip to main content

2022 | OriginalPaper | Buchkapitel

Aeroelasticity in Civil Engineering

verfasst von : Emil Simiu

Erschienen in: A Modern Course in Aeroelasticity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid-structure interaction occurs in civil engineering applications to flexible long span bridges and tall slender buildings. This chapter provides an authoritative account of current best practices and modeling methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Recent research on tall buildings with relatively large ratio between depth and width suggests that this was indeed the case—see Sect. 2.2.2. To the writers’ knowledge, for legal or other reasons, detailed technical reports on the wind-induced behavior of the John Hancock building are not available in the public domain.
 
2
The term “suspended-span bridge” covers both suspension bridges and cable-stayed bridges.
 
3
The late Professor Wallace Hayes of Princeton University sometimes called it “boulevard Bénard.”.
 
4
Birkhoff’s contributions to the field of dynamical systems rank in importance with those of Poincaré, with whom he had close and fruitful scientific interactions.
 
Literatur
1.
Zurück zum Zitat Strouhal V (1870) Über eine besondere Art der Tonerregung. Annalen der Physik 5:216–250 Strouhal V (1870) Über eine besondere Art der Tonerregung. Annalen der Physik 5:216–250
2.
Zurück zum Zitat Bénard H (1908) Formation de centres de gyration à l’arrière d’un obstacle en mouvement. Comptes rendus de l’Académie des sciences 147:839–842 Bénard H (1908) Formation de centres de gyration à l’arrière d’un obstacle en mouvement. Comptes rendus de l’Académie des sciences 147:839–842
3.
Zurück zum Zitat von Kármán T (1911) Über den Mechanismus des Widerstandes den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten der Königlichen Gesellschaft der Wissenschaften, Göttingen, pp 509–517MATH von Kármán T (1911) Über den Mechanismus des Widerstandes den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten der Königlichen Gesellschaft der Wissenschaften, Göttingen, pp 509–517MATH
4.
Zurück zum Zitat Roshko A (1961) Experiments on the flow past a circular cylinder at very high Reynolds number. J Fluid Mech 10:345–356MATHCrossRef Roshko A (1961) Experiments on the flow past a circular cylinder at very high Reynolds number. J Fluid Mech 10:345–356MATHCrossRef
5.
Zurück zum Zitat Shih WCI, Wang C, Coles D, Roshko A (1993) Experiments past rough circular cylinders at large Reynolds numbers. J Wind Eng Industr Aerodyn 49:351–358CrossRef Shih WCI, Wang C, Coles D, Roshko A (1993) Experiments past rough circular cylinders at large Reynolds numbers. J Wind Eng Industr Aerodyn 49:351–358CrossRef
6.
Zurück zum Zitat Simiu E, Yeo D (2019) Wind Effects on Structures, Fourth ed. Wiley, Blackwell Simiu E, Yeo D (2019) Wind Effects on Structures, Fourth ed. Wiley, Blackwell
7.
Zurück zum Zitat Sarpkaya T (1978) Fluid forces on oscillating cylinders. J Waterw Ports Coast Ocean Eng Div ASCE 97:275–290CrossRef Sarpkaya T (1978) Fluid forces on oscillating cylinders. J Waterw Ports Coast Ocean Eng Div ASCE 97:275–290CrossRef
8.
Zurück zum Zitat Bergé P, Pomeau Y, Vidal C (1984) Order within chaos. Wiley, New YorkMATH Bergé P, Pomeau Y, Vidal C (1984) Order within chaos. Wiley, New YorkMATH
9.
Zurück zum Zitat Goswami I, Scanlan RH, Jones NP (1993) Vortex-induced vibration of a circular cylinder in air: I new experimental data; II A new model. J Eng Mech 119:2270–2302 Goswami I, Scanlan RH, Jones NP (1993) Vortex-induced vibration of a circular cylinder in air: I new experimental data; II A new model. J Eng Mech 119:2270–2302
10.
Zurück zum Zitat Scanlan RH (1995) Aeroelastic problems of civil engineering. In: Dowell EH (ed) A modern course in aeroelasticity. Kluwer Academic Publishers, DordrechtMATH Scanlan RH (1995) Aeroelastic problems of civil engineering. In: Dowell EH (ed) A modern course in aeroelasticity. Kluwer Academic Publishers, DordrechtMATH
12.
Zurück zum Zitat Funakawa M (1969) The vibration of a circular cylinder caused by wake in a flow. Bulletin Jpn Soc Mech Eng 12:1003–1010CrossRef Funakawa M (1969) The vibration of a circular cylinder caused by wake in a flow. Bulletin Jpn Soc Mech Eng 12:1003–1010CrossRef
13.
Zurück zum Zitat Nakamura Y (1969) Vortex excitation of a circular cylinder treated as a binary flutter. Rep Res Inst Appl Mech XVII:217–234 (Kyushu University) Nakamura Y (1969) Vortex excitation of a circular cylinder treated as a binary flutter. Rep Res Inst Appl Mech XVII:217–234 (Kyushu University)
14.
Zurück zum Zitat Tamura Y, Matsui G (1979) Wake oscillator model of vortex-induced oscillation of a circular cylinder. In: Proceedings of the fifth conference on wind engineering, Ft. Collins, pp 1085–1094 Tamura Y, Matsui G (1979) Wake oscillator model of vortex-induced oscillation of a circular cylinder. In: Proceedings of the fifth conference on wind engineering, Ft. Collins, pp 1085–1094
15.
Zurück zum Zitat Hartlen RT, Currie IG (1970) A Lift-oscillator model of vortex-induced vibration. J Eng Mech Div ASCE 96:577–591CrossRef Hartlen RT, Currie IG (1970) A Lift-oscillator model of vortex-induced vibration. J Eng Mech Div ASCE 96:577–591CrossRef
16.
Zurück zum Zitat Skop A, Griffin OM (1973) A model for the vortex-excited resonant response of bluff cylinders. J Sound Vib 27:225–233CrossRef Skop A, Griffin OM (1973) A model for the vortex-excited resonant response of bluff cylinders. J Sound Vib 27:225–233CrossRef
17.
Zurück zum Zitat Griffin OM, Skop A (1976) The vortex-excited oscillations of structures. J Sound Vib 44:303–305CrossRef Griffin OM, Skop A (1976) The vortex-excited oscillations of structures. J Sound Vib 44:303–305CrossRef
18.
Zurück zum Zitat Landl R (1975) A mathematical model for vortex-excited vibrations of bluff bodies. J Sound Vib 42:219–234CrossRef Landl R (1975) A mathematical model for vortex-excited vibrations of bluff bodies. J Sound Vib 42:219–234CrossRef
19.
Zurück zum Zitat Wood KN (1976) Coupled oscillator models for vortex-induced oscillation of a circular cylinder. M.S. thesis, University of British Columbia Wood KN (1976) Coupled oscillator models for vortex-induced oscillation of a circular cylinder. M.S. thesis, University of British Columbia
20.
Zurück zum Zitat Wood KN, Parkinson GV (1977) A hysteresis problem in vortex-induced oscillations. In: Proceedings of the Canadian congress of applied mechanics, Vancouver, pp 697–698 Wood KN, Parkinson GV (1977) A hysteresis problem in vortex-induced oscillations. In: Proceedings of the Canadian congress of applied mechanics, Vancouver, pp 697–698
21.
Zurück zum Zitat Dowell EH (1981) Non-linear oscillator models in bluff body aeroelasticity. J Sound Vib 75:251–264MATHCrossRef Dowell EH (1981) Non-linear oscillator models in bluff body aeroelasticity. J Sound Vib 75:251–264MATHCrossRef
22.
Zurück zum Zitat Simiu E, Scanlan RH (1978) Wind effects on structures. Wiley, New York Simiu E, Scanlan RH (1978) Wind effects on structures. Wiley, New York
23.
Zurück zum Zitat Griffin OM, Kop A, Ramberg SE (1975) The resonant vortex-excited vibration of structures and cable systems. Offshore technology conference paper OTC-2319, Houston, TX 1975 Griffin OM, Kop A, Ramberg SE (1975) The resonant vortex-excited vibration of structures and cable systems. Offshore technology conference paper OTC-2319, Houston, TX 1975
24.
Zurück zum Zitat Blevins RD (1990) Flow-induced vibrations, 2nd edn. Van Nostrand Reinhold, New York Blevins RD (1990) Flow-induced vibrations, 2nd edn. Van Nostrand Reinhold, New York
25.
Zurück zum Zitat Iwan WD, Blevins RD (1974) A model for the vortex-induced oscillation of structures. J Appl Mech 41:581–585CrossRef Iwan WD, Blevins RD (1974) A model for the vortex-induced oscillation of structures. J Appl Mech 41:581–585CrossRef
26.
Zurück zum Zitat Billah KYR (1989) A study of vortex-induced vibration. Doctoral Dissertation, Princeton University, Princeton Billah KYR (1989) A study of vortex-induced vibration. Doctoral Dissertation, Princeton University, Princeton
27.
Zurück zum Zitat Berger H (1987) On a mechanism of vortex-induced oscillations of a cylinder. 7th international conference on wind engineering. Aachen, Germany, pp 169–177 Berger H (1987) On a mechanism of vortex-induced oscillations of a cylinder. 7th international conference on wind engineering. Aachen, Germany, pp 169–177
28.
Zurück zum Zitat Bearman P (1979) Pressure fluctuation measurements on an oscillating circular cylinder. J Fluid Mech 91:661–667CrossRef Bearman P (1979) Pressure fluctuation measurements on an oscillating circular cylinder. J Fluid Mech 91:661–667CrossRef
29.
Zurück zum Zitat Glauert H (1919) Rotation of an airfoil about a fixed axis. Aeronautical Research Committee, R&M 595, Great Britain Glauert H (1919) Rotation of an airfoil about a fixed axis. Aeronautical Research Committee, R&M 595, Great Britain
30.
Zurück zum Zitat Den Hartog JP (1932) Transmission line vibration due to sleet. Trans AIEE 51:1074–1076 Den Hartog JP (1932) Transmission line vibration due to sleet. Trans AIEE 51:1074–1076
31.
Zurück zum Zitat Den Hartog JP (1956) Mechanical vibrations, 4th edn. McGraw-Hill, New YorkMATH Den Hartog JP (1956) Mechanical vibrations, 4th edn. McGraw-Hill, New YorkMATH
32.
Zurück zum Zitat Novak M (1972) Galloping oscillations of prismatic structures. J Eng Mech Div ASCE 98:27–46CrossRef Novak M (1972) Galloping oscillations of prismatic structures. J Eng Mech Div ASCE 98:27–46CrossRef
33.
Zurück zum Zitat Novak M (1969) Aeroelastic galloping of prismatic bodies. J Eng Mech Div ASCE 95:115–142CrossRef Novak M (1969) Aeroelastic galloping of prismatic bodies. J Eng Mech Div ASCE 95:115–142CrossRef
34.
Zurück zum Zitat Kryloff N, Bogoliuboff N (1947) Introduction to nonlinear mechanics. Annals of mathematics studies, No. 11 (trans: Lefschetz S). Princeton University Press, Princeton Kryloff N, Bogoliuboff N (1947) Introduction to nonlinear mechanics. Annals of mathematics studies, No. 11 (trans: Lefschetz S). Princeton University Press, Princeton
35.
Zurück zum Zitat Mukhopadyay V, Dugundji J (1976) Wind excited vibration of a square section cantilever beam in smooth flow. J Sound Vib 45:329–339MATHCrossRef Mukhopadyay V, Dugundji J (1976) Wind excited vibration of a square section cantilever beam in smooth flow. J Sound Vib 45:329–339MATHCrossRef
36.
Zurück zum Zitat Skarecky R (1975) Yaw effects on galloping instability. J Eng Mech Div ASCE 101:739–754CrossRef Skarecky R (1975) Yaw effects on galloping instability. J Eng Mech Div ASCE 101:739–754CrossRef
37.
Zurück zum Zitat Richards DJB (1965) Aerodynamic properties of the severn crossing conductor. In: Proceedings of the symposium on wind effects on buildings and structures, vol II. National Physics Laboratory, H.M’.s Stationery Office, Teddington, UK, pp 688–765 Richards DJB (1965) Aerodynamic properties of the severn crossing conductor. In: Proceedings of the symposium on wind effects on buildings and structures, vol II. National Physics Laboratory, H.M’.s Stationery Office, Teddington, UK, pp 688–765
38.
Zurück zum Zitat Simiu E, Cook GR (1992) Empirical fluidelastic models and chaotic galloping : a case study. J Sound Vib 154:45–66MATHCrossRef Simiu E, Cook GR (1992) Empirical fluidelastic models and chaotic galloping : a case study. J Sound Vib 154:45–66MATHCrossRef
39.
Zurück zum Zitat Simiu E (2002) Chaotic transitions in deterministic and stochastic dynamical systems. Princeton University Press, PrincetonMATHCrossRef Simiu E (2002) Chaotic transitions in deterministic and stochastic dynamical systems. Princeton University Press, PrincetonMATHCrossRef
40.
Zurück zum Zitat Scanlan RH (1972) A wind tunnel investigation of bundled power-line conductors, Part VI: Observations on the problem, Rep. LTR-LA-121, National Aeronautical Establishment, National Research Council, Ottawa, Canada Scanlan RH (1972) A wind tunnel investigation of bundled power-line conductors, Part VI: Observations on the problem, Rep. LTR-LA-121, National Aeronautical Establishment, National Research Council, Ottawa, Canada
41.
Zurück zum Zitat Simpson A (1970) Stability of subconductors of smooth cross-section. Proc Inst Electr Eng 117:741–750CrossRef Simpson A (1970) Stability of subconductors of smooth cross-section. Proc Inst Electr Eng 117:741–750CrossRef
42.
Zurück zum Zitat Simpson A (1971) On the flutter of a smooth cylinder in a wake. Aeronaut Quart XXII:101–118 Simpson A (1971) On the flutter of a smooth cylinder in a wake. Aeronaut Quart XXII:101–118
43.
Zurück zum Zitat Wardlaw RL, Cooper KR, Scanlan RH (1973) Observations on the problem of subspan oscillation of bundled power conductors. DME/NAE Quarterly Bulletin, National Research Council, Ottawa, Canada, pp 1–20 Wardlaw RL, Cooper KR, Scanlan RH (1973) Observations on the problem of subspan oscillation of bundled power conductors. DME/NAE Quarterly Bulletin, National Research Council, Ottawa, Canada, pp 1–20
44.
Zurück zum Zitat Simpson A (1971) Wake-induced flutter of circular cylinders: mechanical aspects. Aeronaut Quart XXIII:101–118 Simpson A (1971) Wake-induced flutter of circular cylinders: mechanical aspects. Aeronaut Quart XXIII:101–118
45.
Zurück zum Zitat Simpson A (1972) Determination of the natural frequencies of multi-conductor overhead transmission lines. J Sound Vibr 20:417–449MATHCrossRef Simpson A (1972) Determination of the natural frequencies of multi-conductor overhead transmission lines. J Sound Vibr 20:417–449MATHCrossRef
46.
Zurück zum Zitat Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter, NACA Report 496 Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter, NACA Report 496
47.
Zurück zum Zitat Scanlan RH, Tomko JJ (1971) Aircraft and bridge deck flutter derivatives. J Eng Mech Div ASCE 97:1717–1737CrossRef Scanlan RH, Tomko JJ (1971) Aircraft and bridge deck flutter derivatives. J Eng Mech Div ASCE 97:1717–1737CrossRef
48.
Zurück zum Zitat Thiesemann L, Starossek U (2002) Numerical evaluation of flutter derivatives. In: Grundmann H, Schuëller GI (eds) Structural dynamics. EURODYN2002, Bakkema, Lisse, vol 2, pp 1566–1581 Thiesemann L, Starossek U (2002) Numerical evaluation of flutter derivatives. In: Grundmann H, Schuëller GI (eds) Structural dynamics. EURODYN2002, Bakkema, Lisse, vol 2, pp 1566–1581
49.
Zurück zum Zitat Billah KY, Scanlan RH (1991) Resonance, Tacoma bridge failure, and undergraduate physics books. Am J Phys 59:118–124CrossRef Billah KY, Scanlan RH (1991) Resonance, Tacoma bridge failure, and undergraduate physics books. Am J Phys 59:118–124CrossRef
50.
Zurück zum Zitat Starossek U (1998) Complex notation in flutter analysis. J Struct Eng 124:975–977CrossRef Starossek U (1998) Complex notation in flutter analysis. J Struct Eng 124:975–977CrossRef
51.
Zurück zum Zitat Scanlan RH, Béliveau J-G, Budlong KS (1974) Indicial aerodynamic functions for bridge decks. J Eng Mech Div 100:657–672CrossRef Scanlan RH, Béliveau J-G, Budlong KS (1974) Indicial aerodynamic functions for bridge decks. J Eng Mech Div 100:657–672CrossRef
52.
Zurück zum Zitat Verwiebe C, Ruscheweyh H (1998) Recent research results concerning the exciting mechanism of rain-induced vibrations. J Wind Eng Ind Aerodyn 74–76:1005–1013CrossRef Verwiebe C, Ruscheweyh H (1998) Recent research results concerning the exciting mechanism of rain-induced vibrations. J Wind Eng Ind Aerodyn 74–76:1005–1013CrossRef
53.
Zurück zum Zitat Flamand O (1994) Rain-wind induced vibrations of cables. In: Cable-stayed and suspended bridges, vol 2. Centre Scientifique et Technique du Bâtiment, Nantes, France Flamand O (1994) Rain-wind induced vibrations of cables. In: Cable-stayed and suspended bridges, vol 2. Centre Scientifique et Technique du Bâtiment, Nantes, France
54.
Zurück zum Zitat Kobayashi H, Minami Y, Miki M (1995) Prevention of rain-wind induced vibration of an inclined cable by surface processing. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 753–758 Kobayashi H, Minami Y, Miki M (1995) Prevention of rain-wind induced vibration of an inclined cable by surface processing. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 753–758
55.
Zurück zum Zitat Matsumoto M, Yagi T, Goto M, Sakai S (1998) Rain-induced vibration of inclined cables at limited high reduced wind velocity region. J Wind Eng Ind Aerodyn 91:1–12CrossRef Matsumoto M, Yagi T, Goto M, Sakai S (1998) Rain-induced vibration of inclined cables at limited high reduced wind velocity region. J Wind Eng Ind Aerodyn 91:1–12CrossRef
56.
Zurück zum Zitat Matsumoto M, Shirato H, Yagi T, Goto M, Sakai S, Ohya J (1998) Field observation of the full-scale wind-induced cable vibration. J Wind Eng Ind Aerodyn 91:13–26CrossRef Matsumoto M, Shirato H, Yagi T, Goto M, Sakai S, Ohya J (1998) Field observation of the full-scale wind-induced cable vibration. J Wind Eng Ind Aerodyn 91:13–26CrossRef
57.
Zurück zum Zitat Persoon AJ, Noorlander K (1999) Full-scale measurements on the Erasmus bridge after wind/rain induced cable vibrations. In: Larsen A, Larsen GI, Livesey FM (eds) Wind engineering into the 21st century, vol 2. Bakkema, Rotterdam, pp 1019–1026 Persoon AJ, Noorlander K (1999) Full-scale measurements on the Erasmus bridge after wind/rain induced cable vibrations. In: Larsen A, Larsen GI, Livesey FM (eds) Wind engineering into the 21st century, vol 2. Bakkema, Rotterdam, pp 1019–1026
58.
Zurück zum Zitat Schewe G, Larsen A (1998) Reynolds number effects in the flow around a bluff body bridge deck section. J Wind Eng Ind Aerodyn 74–76:829–838CrossRef Schewe G, Larsen A (1998) Reynolds number effects in the flow around a bluff body bridge deck section. J Wind Eng Ind Aerodyn 74–76:829–838CrossRef
59.
Zurück zum Zitat Matsuda K, Tokushige M, Iwasaki T, Cooper KR, Tanaka H (1999) An investigation of Reynolds number effects on the steady and unsteady aerodynamics forces on a 1:10 scale bridge deck section model. In: Larsen A, Larsen GI, Livesey FM (eds) Wind engineering into the 21st century, vol 2. Bakkema, Rotterdam, pp 971–978 Matsuda K, Tokushige M, Iwasaki T, Cooper KR, Tanaka H (1999) An investigation of Reynolds number effects on the steady and unsteady aerodynamics forces on a 1:10 scale bridge deck section model. In: Larsen A, Larsen GI, Livesey FM (eds) Wind engineering into the 21st century, vol 2. Bakkema, Rotterdam, pp 971–978
60.
Zurück zum Zitat Simiu E (1971) Buffeting and aerodynamic stability of suspension bridges in turbulent wind. Doctoral Dissertation, Princeton University Simiu E (1971) Buffeting and aerodynamic stability of suspension bridges in turbulent wind. Doctoral Dissertation, Princeton University
61.
Zurück zum Zitat Queen DJ, Vejrum T, Larose GL (1999) Aerodynamic studies of the Lions’ Gate bridge–3 lane renovation. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century, vol 2. Bakkema, Rotterdam, pp 1027–1034 Queen DJ, Vejrum T, Larose GL (1999) Aerodynamic studies of the Lions’ Gate bridge–3 lane renovation. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century, vol 2. Bakkema, Rotterdam, pp 1027–1034
62.
Zurück zum Zitat Wardlaw RL (1970) Static force measurements of six deck sections for the proposed new Burrard inlet crossing, Report RTR-LA-53. National Aeronautical Establishment, National Research Council, Ottawa Wardlaw RL (1970) Static force measurements of six deck sections for the proposed new Burrard inlet crossing, Report RTR-LA-53. National Aeronautical Establishment, National Research Council, Ottawa
63.
Zurück zum Zitat Raggett JD (1995) Section model wind tunnel studies, Report W920421. West Wind Laboratory, Calif, Carmel Raggett JD (1995) Section model wind tunnel studies, Report W920421. West Wind Laboratory, Calif, Carmel
64.
Zurück zum Zitat Haan FL (2000) The effects of turbulence on the aerodynamics of long-span bridges. Doctoral Dissertation, Department of Civil Engineering, University of Notre Dame Haan FL (2000) The effects of turbulence on the aerodynamics of long-span bridges. Doctoral Dissertation, Department of Civil Engineering, University of Notre Dame
65.
Zurück zum Zitat Gan Chowdhury A, Sarkar PP (2005) Experimental identification of rational function coefficients for time-domain flutter analysis. Eng Struct 27(9):1349–1364CrossRef Gan Chowdhury A, Sarkar PP (2005) Experimental identification of rational function coefficients for time-domain flutter analysis. Eng Struct 27(9):1349–1364CrossRef
66.
Zurück zum Zitat Sarkar PP, Gan Chowdhury A, Gadner TB (2004) A novel elastic suspension analysis for wind tunnel section model studies. J Wind Eng Ind Aerodyn 92(1):23–40CrossRef Sarkar PP, Gan Chowdhury A, Gadner TB (2004) A novel elastic suspension analysis for wind tunnel section model studies. J Wind Eng Ind Aerodyn 92(1):23–40CrossRef
67.
Zurück zum Zitat Gan Chowdhury A, Sarkar PP (2004) Identification of eighteen flutter derivatives of an airfoil and a bridge deck. Wind Struct 7(3):187–202CrossRef Gan Chowdhury A, Sarkar PP (2004) Identification of eighteen flutter derivatives of an airfoil and a bridge deck. Wind Struct 7(3):187–202CrossRef
68.
Zurück zum Zitat Gan Chowdhury A, Sarkar PP (2003) A new technique for identification of eighteen flutter derivatives using three-degree-of-freedom section model. Eng Struct 25(14):1763–1772CrossRef Gan Chowdhury A, Sarkar PP (2003) A new technique for identification of eighteen flutter derivatives using three-degree-of-freedom section model. Eng Struct 25(14):1763–1772CrossRef
69.
Zurück zum Zitat Jain A, Jones NP, Scanlan RH (1998) Effect of modal damping on bridge aeroelasticity. J Wind Eng Ind Aerodyn 77–78:421–430CrossRef Jain A, Jones NP, Scanlan RH (1998) Effect of modal damping on bridge aeroelasticity. J Wind Eng Ind Aerodyn 77–78:421–430CrossRef
70.
Zurück zum Zitat Singh L, Jones NP, Scanlan RH, Lorendeaux O (1995) Simultaneous identification of 3-DOF aeroelastic parameters. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 972–977 Singh L, Jones NP, Scanlan RH, Lorendeaux O (1995) Simultaneous identification of 3-DOF aeroelastic parameters. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 972–977
71.
Zurück zum Zitat Yamada M, Miyata T, Minh NN, Katsuchi H (1999) Complex flutter-mode analysis for coupled gust response of the Akashi-Kaikyo bridge model. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. Bakkema, Rotterdam, pp 1081–1088 Yamada M, Miyata T, Minh NN, Katsuchi H (1999) Complex flutter-mode analysis for coupled gust response of the Akashi-Kaikyo bridge model. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. Bakkema, Rotterdam, pp 1081–1088
72.
Zurück zum Zitat Miyata T (1999) Comprehensive discussions on aeroelastic-coupled flutter control for very long suspension bridges. Long-span bridges and aerodynamics. Springer, Berlin, pp 181–200 Miyata T (1999) Comprehensive discussions on aeroelastic-coupled flutter control for very long suspension bridges. Long-span bridges and aerodynamics. Springer, Berlin, pp 181–200
73.
Zurück zum Zitat Kubo Y, Sadashima K, Yamaguchi E, Kato K, Okamoto Y, Koga T (2002) Improvement of aeroelastic instability of shallow \({\Pi }\) section. J Wind Eng Ind Aerodyn 89:1445–1457CrossRef Kubo Y, Sadashima K, Yamaguchi E, Kato K, Okamoto Y, Koga T (2002) Improvement of aeroelastic instability of shallow \({\Pi }\) section. J Wind Eng Ind Aerodyn 89:1445–1457CrossRef
74.
Zurück zum Zitat Sato H, Hirahara N, Fumoto K, Hirano S, Kusuhara S (2002) Full aeroelastic model test of a super long-span bridge with slotted box girder. J Wind Eng Ind Aerodyn 90:2023–2032CrossRef Sato H, Hirahara N, Fumoto K, Hirano S, Kusuhara S (2002) Full aeroelastic model test of a super long-span bridge with slotted box girder. J Wind Eng Ind Aerodyn 90:2023–2032CrossRef
75.
Zurück zum Zitat Wardlaw RL, Goetler LL (1968) A wind tunnel study of modifications to improve the aerodynamic stability of the long Creek’s bridge, Report LTR-LA-8. National Aeronautical Establishment, National Research Council, Ottawa Wardlaw RL, Goetler LL (1968) A wind tunnel study of modifications to improve the aerodynamic stability of the long Creek’s bridge, Report LTR-LA-8. National Aeronautical Establishment, National Research Council, Ottawa
76.
Zurück zum Zitat Larsen A, Esdahl S, Andersen JE, Vejrum T (2000) Storebælt suspension bridge–vortex shedding excitation and mitigation by guide vanes. J Wind Eng Ind Aerodyn 88:283–296CrossRef Larsen A, Esdahl S, Andersen JE, Vejrum T (2000) Storebælt suspension bridge–vortex shedding excitation and mitigation by guide vanes. J Wind Eng Ind Aerodyn 88:283–296CrossRef
77.
Zurück zum Zitat Utsunomy H, Nagao F, Noda M, Tanaka E (2001) Vortex-induced oscillation of a bridge in slowly fluctuating wind. J Wind Eng Ind Aerodyn 89:1689–1699CrossRef Utsunomy H, Nagao F, Noda M, Tanaka E (2001) Vortex-induced oscillation of a bridge in slowly fluctuating wind. J Wind Eng Ind Aerodyn 89:1689–1699CrossRef
78.
Zurück zum Zitat Barré C, Flamand O, Grillaud G (1999) The Millau viaduct—special wind studies for an exceptional structure. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. A.A. Bakkema, Rotterdam, pp 827–832 Barré C, Flamand O, Grillaud G (1999) The Millau viaduct—special wind studies for an exceptional structure. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. A.A. Bakkema, Rotterdam, pp 827–832
79.
Zurück zum Zitat Katsuchi H, Jones NP, Scanlan RH (1999) Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. J Struct Eng 125:60–70CrossRef Katsuchi H, Jones NP, Scanlan RH (1999) Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. J Struct Eng 125:60–70CrossRef
80.
Zurück zum Zitat Diana G, Falco M, Bruni S, Cigada A, Larose GL, Damsgaard A, Collina A (1995) Comparisons between wind tunnel tests on a full aeroelastic model of the proposed bridge over Stretto di Messina and numerical results. J Wind Eng Ind Aerodyn 54(55):101–113CrossRef Diana G, Falco M, Bruni S, Cigada A, Larose GL, Damsgaard A, Collina A (1995) Comparisons between wind tunnel tests on a full aeroelastic model of the proposed bridge over Stretto di Messina and numerical results. J Wind Eng Ind Aerodyn 54(55):101–113CrossRef
81.
Zurück zum Zitat Miyata T (2002) Significance of aeroelastic relationship in wind-resistant design of long-span bridges. J Wind Eng Ind Aerodyn 77–78:1479–1492CrossRef Miyata T (2002) Significance of aeroelastic relationship in wind-resistant design of long-span bridges. J Wind Eng Ind Aerodyn 77–78:1479–1492CrossRef
82.
Zurück zum Zitat Scanlan RH (1997) Amplitude and turbulence effects on bridge flutter derivatives. J Struct Eng 123:232–236CrossRef Scanlan RH (1997) Amplitude and turbulence effects on bridge flutter derivatives. J Struct Eng 123:232–236CrossRef
83.
Zurück zum Zitat Irwin PA, Xie J, Dunn G (1995) Wind tunnel studies for the Golden Gate Bridge. Rowan, Williams, Davies, and Irwin, Guelph Irwin PA, Xie J, Dunn G (1995) Wind tunnel studies for the Golden Gate Bridge. Rowan, Williams, Davies, and Irwin, Guelph
84.
Zurück zum Zitat Larsen A (1995) Prediction of aeroelastic stability of suspension bridges during erection. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 917–927 Larsen A (1995) Prediction of aeroelastic stability of suspension bridges during erection. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 917–927
85.
Zurück zum Zitat Brancaleoni F (1992) The construction phase and its aerodynamic issues. In: Larsen A (ed) Aerodynamics of large bridges. Bakkema, Rotterdam Brancaleoni F (1992) The construction phase and its aerodynamic issues. In: Larsen A (ed) Aerodynamics of large bridges. Bakkema, Rotterdam
86.
Zurück zum Zitat Hansen SO, Thorbek LT, Krenk S, Clenance JC (1999) Dynamic response of suspension bridge decks during construction. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. Bakkema, Rotterdam, pp 899–906 Hansen SO, Thorbek LT, Krenk S, Clenance JC (1999) Dynamic response of suspension bridge decks during construction. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. Bakkema, Rotterdam, pp 899–906
87.
Zurück zum Zitat Hosomi M, Koba K, Kobayashi H (1995) Effect of yawed wind on vortex excited response of bridge girder models. Ninth international conference on Wind engineering, vol 2. Wiley, New Delhi, pp 863–870 Hosomi M, Koba K, Kobayashi H (1995) Effect of yawed wind on vortex excited response of bridge girder models. Ninth international conference on Wind engineering, vol 2. Wiley, New Delhi, pp 863–870
88.
Zurück zum Zitat Tanaka H, Kimura K, Nakamura S, Larose GL (1995) Effects of wind yaw angles on bridge response. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 905–916 Tanaka H, Kimura K, Nakamura S, Larose GL (1995) Effects of wind yaw angles on bridge response. In: Wind engineering. Ninth international conference, vol 2. Wiley, New Delhi, pp 905–916
89.
Zurück zum Zitat Zhu LD, Xu YL, Zhang F, Xiang HF (2002) Tsing Ma bridge deck under skew winds–Part I: aerodynamic coefficients. J Wind Eng Ind Aerodyn 90:781–805CrossRef Zhu LD, Xu YL, Zhang F, Xiang HF (2002) Tsing Ma bridge deck under skew winds–Part I: aerodynamic coefficients. J Wind Eng Ind Aerodyn 90:781–805CrossRef
90.
Zurück zum Zitat Zhu LD, Xu YL, Xiang HF (2002) Tsing Ma bridge deck under skew winds–Part II: flutter derivatives. J Wind Eng Ind Aerodyn 90:807–837CrossRef Zhu LD, Xu YL, Xiang HF (2002) Tsing Ma bridge deck under skew winds–Part II: flutter derivatives. J Wind Eng Ind Aerodyn 90:807–837CrossRef
91.
Zurück zum Zitat Matsumoto M, Nakajima N, Taniwaki Y, Shijo R (2001) Grating effect on flutter instability. J Wind Eng Ind Aerodyn 89:1487–1498CrossRef Matsumoto M, Nakajima N, Taniwaki Y, Shijo R (2001) Grating effect on flutter instability. J Wind Eng Ind Aerodyn 89:1487–1498CrossRef
92.
Zurück zum Zitat Jones NP, Scanlan RH, Sarkar PP, Singh L (1995) The effect of section model details on aeroelastic parameters. J Wind Eng Ind Aerodyn 54–55:45–53CrossRef Jones NP, Scanlan RH, Sarkar PP, Singh L (1995) The effect of section model details on aeroelastic parameters. J Wind Eng Ind Aerodyn 54–55:45–53CrossRef
93.
Zurück zum Zitat Kubo Y, Kimura K, Sadashima K, Okamoto Y, Yamaguchi E, Koga T, Kato K (2002) Aerodynamic performance of improved shallow \({\Pi }\) shape bridge deck. J Wind Eng Ind Aerodyn 90:2113–2125CrossRef Kubo Y, Kimura K, Sadashima K, Okamoto Y, Yamaguchi E, Koga T, Kato K (2002) Aerodynamic performance of improved shallow \({\Pi }\) shape bridge deck. J Wind Eng Ind Aerodyn 90:2113–2125CrossRef
94.
Zurück zum Zitat Kawai H (1992) Vortex-induced vibration of tall buildings. J Wind Eng Ind Aerodyn 41–44:117–128CrossRef Kawai H (1992) Vortex-induced vibration of tall buildings. J Wind Eng Ind Aerodyn 41–44:117–128CrossRef
95.
Zurück zum Zitat Katagiri J, Okhuma T, Marukawa H (2001) Motion-induced wind forces acting on rectangular high-rise buildings with side ratio of 2. J Wind Eng Ind Aerodyn 89:1421–1432CrossRef Katagiri J, Okhuma T, Marukawa H (2001) Motion-induced wind forces acting on rectangular high-rise buildings with side ratio of 2. J Wind Eng Ind Aerodyn 89:1421–1432CrossRef
96.
Zurück zum Zitat Ogawa K, Shimodoi H, Oryu T (2002) Aerodynamic characteristics of a 2-box girder section adaptable for a super-long span suspension bridge. J Wind Eng Ind Aerodyn 90:2033–2043 Ogawa K, Shimodoi H, Oryu T (2002) Aerodynamic characteristics of a 2-box girder section adaptable for a super-long span suspension bridge. J Wind Eng Ind Aerodyn 90:2033–2043
97.
Zurück zum Zitat Vickery BJ, Basu RI (1983) Across-wind vibrations of structures with circular cross-section, Part I: Development of a two-dimensional model for two-dimensional conditions’. J Wind Eng Ind Aerodyn 12:49–73CrossRef Vickery BJ, Basu RI (1983) Across-wind vibrations of structures with circular cross-section, Part I: Development of a two-dimensional model for two-dimensional conditions’. J Wind Eng Ind Aerodyn 12:49–73CrossRef
98.
Zurück zum Zitat Basu RI, Vickery BJ (1983) Across-wind vibrations of structures with circular cross-section, Part II: Development of a mathematical model for full-scale application. J Wind Eng Ind Aerodyn 12:75–97CrossRef Basu RI, Vickery BJ (1983) Across-wind vibrations of structures with circular cross-section, Part II: Development of a mathematical model for full-scale application. J Wind Eng Ind Aerodyn 12:75–97CrossRef
99.
Zurück zum Zitat Uematsu Y, Yamada M (1995) Effects of aspect ratio and surface roughness on the time-averaged aerodynamic forces on cantilevered circular cylinders at high Reynolds numbers. J Wind Eng Ind Aerodyn 54–55:301–312CrossRef Uematsu Y, Yamada M (1995) Effects of aspect ratio and surface roughness on the time-averaged aerodynamic forces on cantilevered circular cylinders at high Reynolds numbers. J Wind Eng Ind Aerodyn 54–55:301–312CrossRef
100.
Zurück zum Zitat Ricciardelli F (2001) On the amount of tuned mass to be added for the reduction of the shedding-induced response of chimneys. J Wind Eng Ind Aerodyn 89:1539–1551CrossRef Ricciardelli F (2001) On the amount of tuned mass to be added for the reduction of the shedding-induced response of chimneys. J Wind Eng Ind Aerodyn 89:1539–1551CrossRef
101.
Zurück zum Zitat Scruton C (1963) Note on a device for the suppression of the vortex-excited oscillations of structures of circular or near-circular section, with special application to its application to tall stacks, NPL Aero Report No 1012. National Physical Laboratory, UK, Teddington Scruton C (1963) Note on a device for the suppression of the vortex-excited oscillations of structures of circular or near-circular section, with special application to its application to tall stacks, NPL Aero Report No 1012. National Physical Laboratory, UK, Teddington
102.
Zurück zum Zitat Ruscheweyh H (1994) Vortex-induced vibration. In: Sockel H (ed) Wind-excited vibrations. Springer, New York, pp 51–84CrossRef Ruscheweyh H (1994) Vortex-induced vibration. In: Sockel H (ed) Wind-excited vibrations. Springer, New York, pp 51–84CrossRef
103.
Zurück zum Zitat Walsh DE, Scruton RI (1970) Preventing wind-induced oscillations of structures of circular cross-section.In: Modern design of wind-sensitive structures. Construction Research and Information Association, London Walsh DE, Scruton RI (1970) Preventing wind-induced oscillations of structures of circular cross-section.In: Modern design of wind-sensitive structures. Construction Research and Information Association, London
104.
Zurück zum Zitat Reinhold TA, Sparks PR (1980) The influence of wind direction on the response of a square-section tall building. In: Proceedings of the fifth international conference on wind engineering, Fort Collins, Colorado, 1979, Pergamon Press, Elmsford Reinhold TA, Sparks PR (1980) The influence of wind direction on the response of a square-section tall building. In: Proceedings of the fifth international conference on wind engineering, Fort Collins, Colorado, 1979, Pergamon Press, Elmsford
105.
Zurück zum Zitat Kwok CS, Melbourne WH (1981) Wind-induced lock-in excitation of tall structures. J Struct Div ASCE 107:52–72 Kwok CS, Melbourne WH (1981) Wind-induced lock-in excitation of tall structures. J Struct Div ASCE 107:52–72
106.
Zurück zum Zitat Canadian structural design manual, Supplement No. 4 to the National Building Code of Canada. National Research Council of Canada, Ottawa, (1975) Canadian structural design manual, Supplement No. 4 to the National Building Code of Canada. National Research Council of Canada, Ottawa, (1975)
107.
Zurück zum Zitat Miyashita K et al (1993) Wind-induced response of high-rise buildings–effetcs of corner cuts or openings in square buildings. J Wind Eng Ind Aerodyn 50:319–328CrossRef Miyashita K et al (1993) Wind-induced response of high-rise buildings–effetcs of corner cuts or openings in square buildings. J Wind Eng Ind Aerodyn 50:319–328CrossRef
108.
Zurück zum Zitat Kawai H (1995) Effects of angle of attack on vortex induced vibration and galloping of tall buildings in smooth and turbulent boundary layer flows. J Wind Eng Ind Aerodyn 54:125–132 Kawai H (1995) Effects of angle of attack on vortex induced vibration and galloping of tall buildings in smooth and turbulent boundary layer flows. J Wind Eng Ind Aerodyn 54:125–132
109.
Zurück zum Zitat Xu YL (1999) Buffeting of the Tsing Ma Suspension bridge: analysis and comparison. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. pp 1075–1080 Xu YL (1999) Buffeting of the Tsing Ma Suspension bridge: analysis and comparison. In: Larsen A, Larose GL, Livesey FM (eds) Wind engineering into the 21st century. Tenth international conference on wind engineering, vol 2. pp 1075–1080
110.
Zurück zum Zitat Chen X, Kareem A (2001) Nonlinear response analysis of long-span bridges under turbulent winds. J Wind Eng Ind Aerodyn 89:1335–1350CrossRef Chen X, Kareem A (2001) Nonlinear response analysis of long-span bridges under turbulent winds. J Wind Eng Ind Aerodyn 89:1335–1350CrossRef
111.
Zurück zum Zitat Katsumura A, Katagiri J, Marukawa H, Fujii K (2001) Effects of side ratio on characteristics of across-wind and torsional responses of high-rise buildings. J Wind Eng Ind Aerodyn 89:1433–1444CrossRef Katsumura A, Katagiri J, Marukawa H, Fujii K (2001) Effects of side ratio on characteristics of across-wind and torsional responses of high-rise buildings. J Wind Eng Ind Aerodyn 89:1433–1444CrossRef
112.
Zurück zum Zitat Zhou Y, Kareem A (2003) Aeroelastic balance. J Eng Mech 129:283–292 Zhou Y, Kareem A (2003) Aeroelastic balance. J Eng Mech 129:283–292
113.
Zurück zum Zitat Farquharson F.B (ed) Aerodynamic stability of suspension bridges, Bulletin No. 116, University of Washington Engineering Experiment Station, Seattle, 1949-1954 Farquharson F.B (ed) Aerodynamic stability of suspension bridges, Bulletin No. 116, University of Washington Engineering Experiment Station, Seattle, 1949-1954
114.
Zurück zum Zitat Nakamura Y (1993) Bluff-body aerodynamics and turbulence. J Wind Eng Ind Aerodyn 49:65–78CrossRef Nakamura Y (1993) Bluff-body aerodynamics and turbulence. J Wind Eng Ind Aerodyn 49:65–78CrossRef
115.
Zurück zum Zitat Laneville A, Gartshore IS, Parkinson GV (1997) An explanation of some effects of turbulence on bluff bodies. In: Proceedings of the fourth international conference, Wind Effects on Buildings and Structures. Cambridge University Press, Cambridge Laneville A, Gartshore IS, Parkinson GV (1997) An explanation of some effects of turbulence on bluff bodies. In: Proceedings of the fourth international conference, Wind Effects on Buildings and Structures. Cambridge University Press, Cambridge
Metadaten
Titel
Aeroelasticity in Civil Engineering
verfasst von
Emil Simiu
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-74236-2_6

    Premium Partner