Skip to main content
Erschienen in: Neural Computing and Applications 23/2020

08.05.2020 | Original Article

Aggregating neighborhood information for negative sampling for knowledge graph embedding

verfasst von: Hai Liu, Kairong Hu, Fu-Lee Wang, Tianyong Hao

Erschienen in: Neural Computing and Applications | Ausgabe 23/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Knowledge graphs, as linked data, can be extracted from texts in triple form that illustrate the structure of “entity–relation–entity.” Knowledge graph embedding (KGE) models are used to map entities and relations into a continuous vector space with semantic constraints so as to learn a knowledge graph with fact triples. In the KGE model training process, both positive and negative triples are necessarily provided. Thus, negative sampling methods are meaningful in generating negative samples based on the representations of entities and relations. This paper proposes an innovative neighborhood knowledge selective adversarial network (NKSGAN), which leverages the representation of aggregating neighborhood information to generate high-quality negative samples for enhancing the performances of the discriminator. Experiments are conducted on widely used standard datasets such as FB15k, FB15k-237, WN18 and WN18RR to evaluate our model for link prediction task. The results present the superiority of our proposed NKSGAN than other baseline methods, indicating that the negative sampling process in NKSGAN is effective in generating high-quality negative samples for boosting KGE models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM SIGMOD international conference on Management of data, pp 1247–1250 Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM SIGMOD international conference on Management of data, pp 1247–1250
2.
Zurück zum Zitat Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41CrossRef Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41CrossRef
3.
Zurück zum Zitat Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: WWW, pp 697–706 Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: WWW, pp 697–706
4.
Zurück zum Zitat Jiang T, Liu T, Ge T, Sha L, Li S, Chang B, Sui Z (2016) Encoding temporal information for time-aware link prediction. In: EMNLP, pp 2350–2354 Jiang T, Liu T, Ge T, Sha L, Li S, Chang B, Sui Z (2016) Encoding temporal information for time-aware link prediction. In: EMNLP, pp 2350–2354
5.
Zurück zum Zitat Trivedi R, Dai H, Wang Y, Song L (2017) Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: ICML, pp 3462–3471 Trivedi R, Dai H, Wang Y, Song L (2017) Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: ICML, pp 3462–3471
6.
Zurück zum Zitat Dasgupta S S, Ray S N, Talukdar P (2018) Hyte: hyperplane-based temporally aware knowledge graph embedding. In: EMNLP, pp 2001–2011 Dasgupta S S, Ray S N, Talukdar P (2018) Hyte: hyperplane-based temporally aware knowledge graph embedding. In: EMNLP, pp 2001–2011
7.
Zurück zum Zitat Chen X, Chen M, Shi W, Sun Y, Zaniolo C (2019) Embedding uncertain knowledge graphs. In: AAAI, pp 3363–3370 Chen X, Chen M, Shi W, Sun Y, Zaniolo C (2019) Embedding uncertain knowledge graphs. In: AAAI, pp 3363–3370
8.
Zurück zum Zitat Liu H, Singh P (2004) ConceptNet—a practical commonsense reasoning tool-kit. BT Technol J 22(4):211–226CrossRef Liu H, Singh P (2004) ConceptNet—a practical commonsense reasoning tool-kit. BT Technol J 22(4):211–226CrossRef
9.
Zurück zum Zitat Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. In: NIPS, pp 2787–2795 Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. In: NIPS, pp 2787–2795
10.
Zurück zum Zitat Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: ACL and IJCNLP, pp 687–696 Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix. In: ACL and IJCNLP, pp 687–696
11.
Zurück zum Zitat Yang B, Yih Wt, He X, Gao J, Deng L (2014) Embedding entities and relations for learning and inference in knowledge bases. Preprint arXiv:1412.6575 Yang B, Yih Wt, He X, Gao J, Deng L (2014) Embedding entities and relations for learning and inference in knowledge bases. Preprint arXiv:​1412.​6575
12.
Zurück zum Zitat Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G (2016) Complex embeddings for simple link prediction. In: ICML, pp 2071–2080 Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G (2016) Complex embeddings for simple link prediction. In: ICML, pp 2071–2080
13.
Zurück zum Zitat Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743CrossRef Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743CrossRef
14.
Zurück zum Zitat Wang P, Li S, Pan R (2018) Incorporating GAN for negative sampling in knowledge representation learning. In: AAAI, pp 2005–2012 Wang P, Li S, Pan R (2018) Incorporating GAN for negative sampling in knowledge representation learning. In: AAAI, pp 2005–2012
15.
Zurück zum Zitat Drumond L, Rendle S, Schmidt-Thieme L (2012) Predicting RDF triples in incomplete knowledge bases with tensor factorization. In: SAC, pp 326–331 Drumond L, Rendle S, Schmidt-Thieme L (2012) Predicting RDF triples in incomplete knowledge bases with tensor factorization. In: SAC, pp 326–331
16.
Zurück zum Zitat Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp 1112–1119 Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp 1112–1119
17.
Zurück zum Zitat Cai L, Wang WY (2018) KBGAN: adversarial learning for knowledge graph embeddings. In: NAACL, pp 1470–1480 Cai L, Wang WY (2018) KBGAN: adversarial learning for knowledge graph embeddings. In: NAACL, pp 1470–1480
18.
Zurück zum Zitat Hu K, Liu H, Hao T (2019) A knowledge selective adversarial network for link prediction in knowledge graph. In: NLPCC, pp 171–183 Hu K, Liu H, Hao T (2019) A knowledge selective adversarial network for link prediction in knowledge graph. In: NLPCC, pp 171–183
19.
Zurück zum Zitat Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: ICLR Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: ICLR
20.
Zurück zum Zitat Nathani D, Chauhan J, Sharma C, Kaul M (2019) Learning attention-based embeddings for relation prediction in knowledge graphs. Preprint arXiv:1906.01195 Nathani D, Chauhan J, Sharma C, Kaul M (2019) Learning attention-based embeddings for relation prediction in knowledge graphs. Preprint arXiv:​1906.​01195
21.
Zurück zum Zitat Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: NIPS, pp 3111–3119 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: NIPS, pp 3111–3119
22.
Zurück zum Zitat Lin Y, Liu Z, Sun M, Liu Y, Zhu X (2015) Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp 2181–2187 Lin Y, Liu Z, Sun M, Liu Y, Zhu X (2015) Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp 2181–2187
23.
Zurück zum Zitat Fan M, Zhou Q, Chang E, Zheng TF (2014) Transition-based knowledge graph embedding with relational mapping properties. In: PACLIC, pp 328–337 Fan M, Zhou Q, Chang E, Zheng TF (2014) Transition-based knowledge graph embedding with relational mapping properties. In: PACLIC, pp 328–337
24.
Zurück zum Zitat Feng J, Huang M, Wang M, Zhou M, Hao Y, Zhu X (2016) Knowledge graph embedding by flexible translation. In: KR, pp 557–560 Feng J, Huang M, Wang M, Zhou M, Hao Y, Zhu X (2016) Knowledge graph embedding by flexible translation. In: KR, pp 557–560
25.
Zurück zum Zitat Xiao H, Huang M, Zhu X (2016) From one point to a manifold: knowledge graph embedding for precise link prediction. In: IJCAI, pp 1315–1321 Xiao H, Huang M, Zhu X (2016) From one point to a manifold: knowledge graph embedding for precise link prediction. In: IJCAI, pp 1315–1321
26.
Zurück zum Zitat Tan Z, Zhao X, Fang Y, Xiao W (2018) GTrans: generic knowledge graph embedding via multi-state entities and dynamic relation spaces. IEEE Access 6:8232–8244CrossRef Tan Z, Zhao X, Fang Y, Xiao W (2018) GTrans: generic knowledge graph embedding via multi-state entities and dynamic relation spaces. IEEE Access 6:8232–8244CrossRef
27.
Zurück zum Zitat Sun Z, Deng ZH, Nie JY, Tang J (2019) RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR Sun Z, Deng ZH, Nie JY, Tang J (2019) RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR
28.
Zurück zum Zitat Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective learning on multi-relational data. In: ICML, pp 809–816 Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective learning on multi-relational data. In: ICML, pp 809–816
29.
Zurück zum Zitat Nickel M, Rosasco L, Poggio T (2016) Holographic embeddings of knowledge graphs. In: AAAI, pp 1955–1961 Nickel M, Rosasco L, Poggio T (2016) Holographic embeddings of knowledge graphs. In: AAAI, pp 1955–1961
30.
Zurück zum Zitat Kazemi SM, Poole D (2018) SimplE embedding for link prediction in knowledge graphs. In: NIPS, pp 4284–4295 Kazemi SM, Poole D (2018) SimplE embedding for link prediction in knowledge graphs. In: NIPS, pp 4284–4295
31.
Zurück zum Zitat Balažević I, Allen C, Hospedales TM (2019) TuckER: tensor factorization for knowledge graph completion. Preprint arXiv:1901.09590 Balažević I, Allen C, Hospedales TM (2019) TuckER: tensor factorization for knowledge graph completion. Preprint arXiv:​1901.​09590
32.
Zurück zum Zitat Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp 926–934 Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp 926–934
33.
Zurück zum Zitat Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W (2014) Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD, pp 601–610 Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K, Strohmann T, Sun S, Zhang W (2014) Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD, pp 601–610
34.
Zurück zum Zitat Dettmers T, Minervini P, Stenetorp P, Riedel S (2018) Convolutional 2D knowledge graph embeddings. In: AAAI, pp 1811–1818 Dettmers T, Minervini P, Stenetorp P, Riedel S (2018) Convolutional 2D knowledge graph embeddings. In: AAAI, pp 1811–1818
35.
Zurück zum Zitat Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D (2018) A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL-HLT, pp 327–333 Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D (2018) A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL-HLT, pp 327–333
36.
Zurück zum Zitat Nguyen DQ, Vu T, Nguyen TD, Nguyen DQ, Phung D (2019) A capsule network-based embedding model for knowledge graph completion and search personalization. In: NAACL-HLT, pp 2180–2189 Nguyen DQ, Vu T, Nguyen TD, Nguyen DQ, Phung D (2019) A capsule network-based embedding model for knowledge graph completion and search personalization. In: NAACL-HLT, pp 2180–2189
37.
Zurück zum Zitat Shang C, Tang Y, Huang J, Bi J, He X, Zhou B (2019) End-to-end structure-aware convolutional networks for knowledge base completion, In: AAAI, pp 3060–3067 Shang C, Tang Y, Huang J, Bi J, He X, Zhou B (2019) End-to-end structure-aware convolutional networks for knowledge base completion, In: AAAI, pp 3060–3067
38.
Zurück zum Zitat Krompaß D, Baier S, Tresp V (2015) Type-constrained representation learning in knowledge graphs. In: ISWC, pp 640–655 Krompaß D, Baier S, Tresp V (2015) Type-constrained representation learning in knowledge graphs. In: ISWC, pp 640–655
39.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: NIPS, pp 2672–2680
40.
Zurück zum Zitat Rensink RA (2000) The dynamic representation of scenes. Vis Cognit 7(1–3):17–42CrossRef Rensink RA (2000) The dynamic representation of scenes. Vis Cognit 7(1–3):17–42CrossRef
41.
Zurück zum Zitat Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215CrossRef Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215CrossRef
42.
Zurück zum Zitat Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: NIPS, pp 2204–2212 Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: NIPS, pp 2204–2212
44.
Zurück zum Zitat Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D (2015) Draw: a recurrent neural network for image generation. Preprint arXiv:1502.04623 Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D (2015) Draw: a recurrent neural network for image generation. Preprint arXiv:​1502.​04623
45.
Zurück zum Zitat Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: neural image caption generation with visual attention. In: ICML, pp 2048–2057 Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: neural image caption generation with visual attention. In: ICML, pp 2048–2057
46.
Zurück zum Zitat Ji Y, Zhang H, Wu QJ (2018) Salient object detection via multi-scale attention CNN. Neurocomputing 322:130–140CrossRef Ji Y, Zhang H, Wu QJ (2018) Salient object detection via multi-scale attention CNN. Neurocomputing 322:130–140CrossRef
47.
Zurück zum Zitat Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. Preprint arXiv:1409.0473 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. Preprint arXiv:​1409.​0473
48.
Zurück zum Zitat Luong T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: EMNLP, pp 1412–1421 Luong T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: EMNLP, pp 1412–1421
49.
Zurück zum Zitat Zhang H, Li J, Ji Y, Yue H (2016) Understanding subtitles by character-level sequence-to-sequence learning. IEEE Trans Ind Inform 13(2):616–624CrossRef Zhang H, Li J, Ji Y, Yue H (2016) Understanding subtitles by character-level sequence-to-sequence learning. IEEE Trans Ind Inform 13(2):616–624CrossRef
50.
Zurück zum Zitat Gehring J, Auli M, Grangier D, Dauphin Y (2017) A convolutional encoder model for neural machine translation. In: ACL, pp 123–135 Gehring J, Auli M, Grangier D, Dauphin Y (2017) A convolutional encoder model for neural machine translation. In: ACL, pp 123–135
51.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: NIPS, pp 5998–6008 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: NIPS, pp 5998–6008
52.
Zurück zum Zitat Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. Preprint arXiv:1810.04805 Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. Preprint arXiv:​1810.​04805
53.
Zurück zum Zitat Dai Z, Yang Z, Yang Y, Cohen WW, Carbonell J, Le QV, Salakhutdinov R (2019) Transformer-xl: attentive language models beyond a fixed-length context. Preprint arXiv:1901.02860 Dai Z, Yang Z, Yang Y, Cohen WW, Carbonell J, Le QV, Salakhutdinov R (2019) Transformer-xl: attentive language models beyond a fixed-length context. Preprint arXiv:​1901.​02860
54.
Zurück zum Zitat Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: generalized autoregressive pretraining for language understanding. Preprint arXiv:1906.08237 Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: generalized autoregressive pretraining for language understanding. Preprint arXiv:​1906.​08237
55.
Zurück zum Zitat Hermann KM, Kocisky T, Grefenstette E, Espeholt L, Kay W, Suleyman M, Blunsom P (2015) Teaching machines to read and comprehend. In: NIPS, pp 1693–1701 Hermann KM, Kocisky T, Grefenstette E, Espeholt L, Kay W, Suleyman M, Blunsom P (2015) Teaching machines to read and comprehend. In: NIPS, pp 1693–1701
56.
Zurück zum Zitat Rush AM, Chopra S, Weston J (2015) A neural attention model for abstractive sentence summarization. In: EMNLP, pp 379–389 Rush AM, Chopra S, Weston J (2015) A neural attention model for abstractive sentence summarization. In: EMNLP, pp 379–389
57.
Zurück zum Zitat Wang L, Cao Z, De Melo G, Liu Z (2016) Relation classification via multi-level attention cnns. In: ACL, pp 1298–1307 Wang L, Cao Z, De Melo G, Liu Z (2016) Relation classification via multi-level attention cnns. In: ACL, pp 1298–1307
59.
Zurück zum Zitat Feng J, Huang M, Yang Y (2016) GAKE: graph aware knowledge embedding. In: COLING, pp 641–651 Feng J, Huang M, Yang Y (2016) GAKE: graph aware knowledge embedding. In: COLING, pp 641–651
60.
Zurück zum Zitat Choi E, Bahadori MT, Song L, Stewart WF, Sun J (2017) GRAM: graph-based attention model for healthcare representation learning. In: KDD, pp 787–795 Choi E, Bahadori MT, Song L, Stewart WF, Sun J (2017) GRAM: graph-based attention model for healthcare representation learning. In: KDD, pp 787–795
61.
Zurück zum Zitat Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: ICLR Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: ICLR
62.
Zurück zum Zitat Schlichtkrull M, Kipf T N, Bloem P, Van Den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: ESWC, pp 593–607 Schlichtkrull M, Kipf T N, Bloem P, Van Den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: ESWC, pp 593–607
63.
Zurück zum Zitat Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforcement learning with function approximation. In: NIPS, pp 1057–1063 Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforcement learning with function approximation. In: NIPS, pp 1057–1063
64.
Zurück zum Zitat Toutanova K, Chen D, Pantel P, Poon H, Choudhury P, Gamon M (2015) Representing text for joint embedding of text and knowledge bases. In: EMNLP, pp 1499–1509 Toutanova K, Chen D, Pantel P, Poon H, Choudhury P, Gamon M (2015) Representing text for joint embedding of text and knowledge bases. In: EMNLP, pp 1499–1509
65.
Zurück zum Zitat Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: AAAI, pp 1306–1313 Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: AAAI, pp 1306–1313
66.
Zurück zum Zitat Xiong W, Hoang T, Wang WY (2017) DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp 564–573 Xiong W, Hoang T, Wang WY (2017) DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp 564–573
67.
Zurück zum Zitat Mahdisoltani F, Biega J, Suchanek FM (2015) YAGO3: a knowledge base from multilingual wikipedias. In: CIDR Mahdisoltani F, Biega J, Suchanek FM (2015) YAGO3: a knowledge base from multilingual wikipedias. In: CIDR
Metadaten
Titel
Aggregating neighborhood information for negative sampling for knowledge graph embedding
verfasst von
Hai Liu
Kairong Hu
Fu-Lee Wang
Tianyong Hao
Publikationsdatum
08.05.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 23/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04940-5

Weitere Artikel der Ausgabe 23/2020

Neural Computing and Applications 23/2020 Zur Ausgabe

S.I. : Emerging applications of Deep Learning and Spiking ANN

Change detection and convolution neural networks for fall recognition

S.I. : Emerging applications of Deep Learning and Spiking ANN

A novel validation framework to enhance deep learning models in time-series forecasting