Skip to main content
Erschienen in: Neural Computing and Applications 23/2020

08.07.2020 | S.I. : Emerging applications of Deep Learning and Spiking ANN

A novel validation framework to enhance deep learning models in time-series forecasting

verfasst von: Ioannis E. Livieris, Stavros Stavroyiannis, Emmanuel Pintelas, Panagiotis Pintelas

Erschienen in: Neural Computing and Applications | Ausgabe 23/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time-series analysis and forecasting is generally considered as one of the most challenging problems in data mining. During the last decade, powerful deep learning methodologies have been efficiently applied for time-series forecasting; however, they cannot guarantee the development of reliable prediction models. In this work, we introduce a novel framework for supporting deep learning in enhancing accurate, efficient and reliable time-series models. The major novelty of our proposed methodology is that it ensures a time-series to be “suitable” for fitting a deep learning model by performing a series of transformations in order to satisfy the stationarity property. The enforcement of stationarity is performed by the application of Augmented Dickey–Fuller test and transformations based on first differences or returns, without the loss of any embedded information. The reliability of the deep learning model’s predictions is guaranteed by rejecting the hypothesis of autocorrelation in the model’s errors, which is demonstrated by autocorrelation function plots and Ljung–Box Q test. Our numerical experiments were performed utilizing time-series from three real-world application domains (financial market, energy sector, cryptocurrency area), which incorporate most of global research interest. The performance of all forecasting models was compared on both problems of forecasting time-series price (regression) and time-series directional movements (classification). Additionally, the reliability of the models’ forecasts was evaluated by examining the existence of autocorrelation in the errors. Our numerical experiments indicate that our proposed methodology considerably improves the forecasting performance of a deep learning model, in terms of efficiency, accuracy and reliability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Non-stationary time-series which can be transformed in this way are called series integrated of order d. Usually, the order of integration is either I(0) or I(1); it’s extremely rare to see values for d that are 2 or more in real-world applications [7]. Additionally, all series in this research are I(1).
 
Literatur
1.
Zurück zum Zitat Ahmed NK, Atiya AF, Gayar NE, El-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econom Rev 29(5–6):594–621MathSciNetCrossRef Ahmed NK, Atiya AF, Gayar NE, El-Shishiny H (2010) An empirical comparison of machine learning models for time series forecasting. Econom Rev 29(5–6):594–621MathSciNetCrossRef
2.
Zurück zum Zitat Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
3.
Zurück zum Zitat Bontempi G, Taieb SB, Le Borgne Y (2012) Machine learning strategies for time series forecasting. In: European business intelligence summer school. Springer, Berlin, pp 62–77 Bontempi G, Taieb SB, Le Borgne Y (2012) Machine learning strategies for time series forecasting. In: European business intelligence summer school. Springer, Berlin, pp 62–77
4.
Zurück zum Zitat Bougoudis I, Demertzis K, Iliadis L (2016) HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. Neural Comput Appl 27(5):1191–1206CrossRef Bougoudis I, Demertzis K, Iliadis L (2016) HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. Neural Comput Appl 27(5):1191–1206CrossRef
5.
Zurück zum Zitat Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley, LondonMATH Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley, LondonMATH
6.
Zurück zum Zitat Brockwell PJ, Davis RA (2016) Introduction to time series and forecasting. Springer, BerlinMATHCrossRef Brockwell PJ, Davis RA (2016) Introduction to time series and forecasting. Springer, BerlinMATHCrossRef
7.
Zurück zum Zitat Burke S, Hunter J (2005) Modelling non-stationary economic time series: a multivariate approach. Springer, BerlinCrossRef Burke S, Hunter J (2005) Modelling non-stationary economic time series: a multivariate approach. Springer, BerlinCrossRef
8.
Zurück zum Zitat Cen Z, Wang J (2019) Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer. Energy 169:160–171CrossRef Cen Z, Wang J (2019) Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer. Energy 169:160–171CrossRef
9.
Zurück zum Zitat Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A (2018) A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans Neural Syst Rehabil Eng 26(4):758–769CrossRef Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A (2018) A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans Neural Syst Rehabil Eng 26(4):758–769CrossRef
10.
Zurück zum Zitat Donate JP, Li X, Sánchez GG, de Miguel AS (2013) Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm. Neural Comput Appl 22(1):11–20CrossRef Donate JP, Li X, Sánchez GG, de Miguel AS (2013) Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm. Neural Comput Appl 22(1):11–20CrossRef
11.
Zurück zum Zitat Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P (2019) Deep learning for time series classification: a review. Data Min Knowl Disc 33(4):917–963MathSciNetCrossRef Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P (2019) Deep learning for time series classification: a review. Data Min Knowl Disc 33(4):917–963MathSciNetCrossRef
12.
Zurück zum Zitat Fischer T, Krauss C (2018) Deep learning with long short-term memory networks for financial market predictions. Eur J Oper Res 270(2):654–669MathSciNetMATHCrossRef Fischer T, Krauss C (2018) Deep learning with long short-term memory networks for financial market predictions. Eur J Oper Res 270(2):654–669MathSciNetMATHCrossRef
13.
Zurück zum Zitat Fu T (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181CrossRef Fu T (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181CrossRef
14.
Zurück zum Zitat Gocheva-Ilieva SG, Voynikova DS, Stoimenova MP, Ivanov AV, Iliev IP (2019) Regression trees modeling of time series for air pollution analysis and forecasting. Neural Comput Appl 31(12):9023–9039CrossRef Gocheva-Ilieva SG, Voynikova DS, Stoimenova MP, Ivanov AV, Iliev IP (2019) Regression trees modeling of time series for air pollution analysis and forecasting. Neural Comput Appl 31(12):9023–9039CrossRef
15.
Zurück zum Zitat Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd
16.
Zurück zum Zitat Ji S, Kim J, Im H (2019) A comparative study of Bitcoin price prediction using deep learning. Mathematics 7(10):898CrossRef Ji S, Kim J, Im H (2019) A comparative study of Bitcoin price prediction using deep learning. Mathematics 7(10):898CrossRef
17.
Zurück zum Zitat Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: 2015 International conference on learning representations Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: 2015 International conference on learning representations
18.
Zurück zum Zitat Liu S, Zhang C, Ma J (2017) CNN-LSTM neural network model for quantitative strategy analysis in stock markets. In: International conference on neural information processing. Springer, Berlin, pp 198–206 Liu S, Zhang C, Ma J (2017) CNN-LSTM neural network model for quantitative strategy analysis in stock markets. In: International conference on neural information processing. Springer, Berlin, pp 198–206
19.
Zurück zum Zitat Livieris IE, Pintelas E, Kiriakidou N, Stavroyiannis S (2020) An advanced deep learning model for short-term forecasting U.S. natural gas price and movement. In: 16th International conference on artificial intelligence applications and innovations Livieris IE, Pintelas E, Kiriakidou N, Stavroyiannis S (2020) An advanced deep learning model for short-term forecasting U.S. natural gas price and movement. In: 16th International conference on artificial intelligence applications and innovations
20.
Zurück zum Zitat Livieris IE, Pintelas E, Pintelas P (2020) A CNN–LSTM model for gold price time series forecasting. In: Neural computing and applications Livieris IE, Pintelas E, Pintelas P (2020) A CNN–LSTM model for gold price time series forecasting. In: Neural computing and applications
21.
Zurück zum Zitat Nakano M, Takahashi A, Takahashi S (2018) Bitcoin technical trading with artificial neural network. Physica A 510:587–609CrossRef Nakano M, Takahashi A, Takahashi S (2018) Bitcoin technical trading with artificial neural network. Physica A 510:587–609CrossRef
22.
Zurück zum Zitat Osborne J (2010) Improving your data transformations: applying the Box-Cox transformation. Pract Assess Res Eval 15(1):12 Osborne J (2010) Improving your data transformations: applying the Box-Cox transformation. Pract Assess Res Eval 15(1):12
23.
Zurück zum Zitat Pal A, Prakash PKS (2017) Practical time series analysis: master time series data processing, visualization, and modeling using python. Packt Publishing Ltd Pal A, Prakash PKS (2017) Practical time series analysis: master time series data processing, visualization, and modeling using python. Packt Publishing Ltd
25.
Zurück zum Zitat Pintelas E, Livieris IE, Stavroyiannis S, Kotsilieris T, Pintelas P (2020) Investigating the problem of cryptocurrency price prediction: a deep learning approach. In: 16th International conference on artificial intelligence applications and innovations Pintelas E, Livieris IE, Stavroyiannis S, Kotsilieris T, Pintelas P (2020) Investigating the problem of cryptocurrency price prediction: a deep learning approach. In: 16th International conference on artificial intelligence applications and innovations
26.
Zurück zum Zitat Shaman P (2010) Generalized Levinson–Durbin sequences, binomial coefficients and autoregressive estimation. J Multivar Anal 101(5):1263–1273MathSciNetMATHCrossRef Shaman P (2010) Generalized Levinson–Durbin sequences, binomial coefficients and autoregressive estimation. J Multivar Anal 101(5):1263–1273MathSciNetMATHCrossRef
27.
Zurück zum Zitat Stavroyiannis S (2019) Can Bitcoin diversify significantly a portfolio? Int J Econ Bus Res 18(4):399–411CrossRef Stavroyiannis S (2019) Can Bitcoin diversify significantly a portfolio? Int J Econ Bus Res 18(4):399–411CrossRef
28.
Zurück zum Zitat Tanaka K (2017) Time series analysis: nonstationary and noninvertible distribution theory, vol 4. Wiley, LondonMATHCrossRef Tanaka K (2017) Time series analysis: nonstationary and noninvertible distribution theory, vol 4. Wiley, LondonMATHCrossRef
29.
Zurück zum Zitat Urtnasan E, Park J, Lee K (2018) Automatic detection of sleep-disordered breathing events using recurrent neural networks from an electrocardiogram signal. In: Neural computing and applications, pp 1–10 Urtnasan E, Park J, Lee K (2018) Automatic detection of sleep-disordered breathing events using recurrent neural networks from an electrocardiogram signal. In: Neural computing and applications, pp 1–10
30.
Zurück zum Zitat Weigend AS (2018) Time series prediction: forecasting the future and understanding the past. Routledge, LondonCrossRef Weigend AS (2018) Time series prediction: forecasting the future and understanding the past. Routledge, LondonCrossRef
31.
Zurück zum Zitat Xingjian SHI, Chen Z, Wang H, Yeung D, Wong W, Woo W (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, pp 802–810 Xingjian SHI, Chen Z, Wang H, Yeung D, Wong W, Woo W (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, pp 802–810
32.
Zurück zum Zitat Zhao Y, Li J, Yu L (2017) A deep learning ensemble approach for crude oil price forecasting. Energy Econ 66:9–16CrossRef Zhao Y, Li J, Yu L (2017) A deep learning ensemble approach for crude oil price forecasting. Energy Econ 66:9–16CrossRef
Metadaten
Titel
A novel validation framework to enhance deep learning models in time-series forecasting
verfasst von
Ioannis E. Livieris
Stavros Stavroyiannis
Emmanuel Pintelas
Panagiotis Pintelas
Publikationsdatum
08.07.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 23/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05169-y

Weitere Artikel der Ausgabe 23/2020

Neural Computing and Applications 23/2020 Zur Ausgabe

S.I. : Emerging applications of Deep Learning and Spiking ANN

A CNN–LSTM model for gold price time-series forecasting