Skip to main content
Erschienen in: Neural Computing and Applications 23/2020

06.05.2020 | Original Article

Anatomical region identification in medical X-ray computed tomography (CT) scans: development and comparison of alternative data analysis and vision-based methods

verfasst von: Odai S. Salman, Ran Klein

Erschienen in: Neural Computing and Applications | Ausgabe 23/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many medical image processing applications rely on targeted regions of interest within a larger volumetric image. Whole-body scans represent an extreme case in which large volumes must be broken into smaller sub-volumes for regional analysis. In this work, we sought automatic solutions to divide medical X-ray computed tomography (CT) images into six main anatomical regions: head, neck, chest, abdomen, pelvis and legs. We implemented and compared three methods: (1) an analytical approach which does not require training and solely relies on utilizing critical points in image intensity profiles to derive cut-planes that divide the scan into the mentioned regions, (2) a classical convolutional neural network (CNN) approach, which classifies each transaxial 2D plane independently and then concatenates classification results, and (3) CNN followed by a context-based correction algorithm (CBCA) which improves the CNN classification using positional relationships between all CT slices. The analytical approach achieved acceptable accuracy for anatomical region segmentation without the need for explicit data labeling and was effective for batch labeling whole-body CTs, greatly reducing manual labeling efforts. CNNs achieved superior accuracy and allowed for rapid development and training, but required labeled data and were susceptible to produce discontinuous anatomical regions and therefore ambiguous anatomical boundaries. Post hoc correction of CNN results using CBCA overcame these limitations, achieving nearly perfect CT slice labeling and anatomical region segmentation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, DeKemp RA (2010) Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol 17(4):600–616CrossRef Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, DeKemp RA (2010) Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol 17(4):600–616CrossRef
2.
Zurück zum Zitat Zhou X, Takayama R, Wang S, Hara T, Fujita H (2017) Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 44(10):5221–5233CrossRef Zhou X, Takayama R, Wang S, Hara T, Fujita H (2017) Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 44(10):5221–5233CrossRef
3.
Zurück zum Zitat Vania M, Mureja D, Lee D (2019) Automatic spine segmentation from CT images using convolutional neural network via redundant generation of class labels. J Comput Des Eng 6(2):224–232 Vania M, Mureja D, Lee D (2019) Automatic spine segmentation from CT images using convolutional neural network via redundant generation of class labels. J Comput Des Eng 6(2):224–232
4.
Zurück zum Zitat Cordier N, Delingette H, Ayache N (2015) A patch-based approach for the segmentation of pathologies: application to glioma labelling. IEEE Trans Med Imaging 35(4):11 Cordier N, Delingette H, Ayache N (2015) A patch-based approach for the segmentation of pathologies: application to glioma labelling. IEEE Trans Med Imaging 35(4):11
5.
Zurück zum Zitat Sun J, Chen W, Peng S, Liu B (2019) DRRNet: dense residual refine networks for automatic brain tumor segmentation. J Med Syst 43(7):221CrossRef Sun J, Chen W, Peng S, Liu B (2019) DRRNet: dense residual refine networks for automatic brain tumor segmentation. J Med Syst 43(7):221CrossRef
6.
Zurück zum Zitat Goo HW (2012) CT radiation dose optimization and estimation: an update for radiologists. Seoulm 13(1):1–11MathSciNet Goo HW (2012) CT radiation dose optimization and estimation: an update for radiologists. Seoulm 13(1):1–11MathSciNet
8.
Zurück zum Zitat Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing Systems, vol 27 (NIPS ’14). NIPS Foundation, pp 3320–3328 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing Systems, vol 27 (NIPS ’14). NIPS Foundation, pp 3320–3328
9.
Zurück zum Zitat Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In IEEE conference on computer vision and pattern recognition workshops Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In IEEE conference on computer vision and pattern recognition workshops
10.
Zurück zum Zitat Donahue J, Yangqing J, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrel T (2013) DeCAF: a deep convolutional activation feature for generic visual recognition. UC Berkeley & ICSI, Berkeley Donahue J, Yangqing J, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrel T (2013) DeCAF: a deep convolutional activation feature for generic visual recognition. UC Berkeley & ICSI, Berkeley
11.
Zurück zum Zitat Garcia-Gasulla D, Vilalta A, Parés F, Moreno J, Ayguadé E, Labarta J, Cortés U, Suzumura T (2018) An out-of-the-box full-network embedding for convolutional neural networks. In: 2018 IEEE international conference on big knowledge (ICBK). IEEE, pp 168–175 Garcia-Gasulla D, Vilalta A, Parés F, Moreno J, Ayguadé E, Labarta J, Cortés U, Suzumura T (2018) An out-of-the-box full-network embedding for convolutional neural networks. In: 2018 IEEE international conference on big knowledge (ICBK). IEEE, pp 168–175
12.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9
13.
Zurück zum Zitat Roth H, Lee C, Shin H, Seff A, Kim L, Yao J, Lu L, Summers R (2015) Anatomy-specific classification of medical images using deep convolutional nets. In: IEEE 12th international symposium on biomedical imaging (ISBI). IEEE Roth H, Lee C, Shin H, Seff A, Kim L, Yao J, Lu L, Summers R (2015) Anatomy-specific classification of medical images using deep convolutional nets. In: IEEE 12th international symposium on biomedical imaging (ISBI). IEEE
14.
Zurück zum Zitat Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRef Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRef
15.
Zurück zum Zitat Andersen HK, Jensen K, Berstad AE, Aaløkken TM, Kristiansen J, von Gohren EB, Hagen G, Martinsen AC (2014) Choosing the best reconstruction technique in abdominal computed tomography: a systematic approach. J Comput Assist Tomogr 38(6):853–8CrossRef Andersen HK, Jensen K, Berstad AE, Aaløkken TM, Kristiansen J, von Gohren EB, Hagen G, Martinsen AC (2014) Choosing the best reconstruction technique in abdominal computed tomography: a systematic approach. J Comput Assist Tomogr 38(6):853–8CrossRef
16.
Zurück zum Zitat Patrick S, Birur NP, Gurushanth K, Raghavan AS, Gurudath S (2017) Comparison of gray values of cone-beam computed tomography with hounsfield units of multislice computed tomography: an in vitro study. Indian J Dent Res 28(1):66CrossRef Patrick S, Birur NP, Gurushanth K, Raghavan AS, Gurudath S (2017) Comparison of gray values of cone-beam computed tomography with hounsfield units of multislice computed tomography: an in vitro study. Indian J Dent Res 28(1):66CrossRef
17.
Zurück zum Zitat Kuntz E, Kuntz HD (2006) Hepatology, principles and practice: history, morphology, biochemistry, diagnostics, clinic, therapy. Springer, New York Kuntz E, Kuntz HD (2006) Hepatology, principles and practice: history, morphology, biochemistry, diagnostics, clinic, therapy. Springer, New York
18.
Zurück zum Zitat Lepor H (2000) Prostatic diseases. W.B. Saunders Company, New York, p 83 Lepor H (2000) Prostatic diseases. W.B. Saunders Company, New York, p 83
19.
Zurück zum Zitat Marsaglia G, Tsang W, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8(18):1–4CrossRef Marsaglia G, Tsang W, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8(18):1–4CrossRef
20.
Zurück zum Zitat Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78CrossRef Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78CrossRef
21.
Zurück zum Zitat Miller LH (1956) Table of percentage points of Kolmogorov statistics. J Am Stat Assoc 51(273):111–121CrossRef Miller LH (1956) Table of percentage points of Kolmogorov statistics. J Am Stat Assoc 51(273):111–121CrossRef
22.
Zurück zum Zitat McDonald J (2008) Handbook of biological statistics. Sparky House Publishing, Baltimore McDonald J (2008) Handbook of biological statistics. Sparky House Publishing, Baltimore
Metadaten
Titel
Anatomical region identification in medical X-ray computed tomography (CT) scans: development and comparison of alternative data analysis and vision-based methods
verfasst von
Odai S. Salman
Ran Klein
Publikationsdatum
06.05.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 23/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04923-6

Weitere Artikel der Ausgabe 23/2020

Neural Computing and Applications 23/2020 Zur Ausgabe

S.I.: Emerging applications of Deep Learning and Spiking ANN

On time series representations for multi-label NILM

S.I. : Emerging applications of Deep Learning and Spiking ANN

Critical infrastructure protection based on memory-augmented meta-learning framework