Skip to main content
Erschienen in: Neural Computing and Applications 23/2020

07.05.2020 | Original Article

Double graphs-based discriminant projections for dimensionality reduction

verfasst von: Jianping Gou, Ya Xue, Hongxing Ma, Yong Liu, Yongzhao Zhan, Jia Ke

Erschienen in: Neural Computing and Applications | Ausgabe 23/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph embedding plays an important role in dimensionality reduction for processing the high-dimensional data. In graph embedding, its keys are the different kinds of graph constructions that determine the performance of dimensionality reduction. Inspired by this fact, in this article we propose a novel graph embedding method named the double graphs-based discriminant projections (DGDP) by integrating two designed discriminative global graph constructions. The proposed DGDP can well discover the discriminant and geometrical structures of the high-dimensional data through the informative graph constructions. In two global graph constructions, we consider the geometrical distribution of each point on each edge of the graphs to define the adjacent weights with class information. Moreover, in the weight definition of one graph construction, we further strengthen pattern discrimination among all the classes to design the weights of the corresponding adjacent graph. To demonstrate the effectiveness of the proposed DGDP, we experimentally compare it with the state-of-the-art graph embedding methods on several data sets. The experimental results show that the proposed graph embedding method outperforms the competing methods with more power of data representation and pattern discrimination in the embedded subspace.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces versus Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720 Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces versus Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720
2.
Zurück zum Zitat He X, Yan S, Hu Y (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340 He X, Yan S, Hu Y (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340
3.
Zurück zum Zitat Gao Q, Xu S, Chen F, Ding C (2018) \(R_{1}\)-2-DPCA and face recognition. IEEE Trans Cybern 49(4):1212–1223 Gao Q, Xu S, Chen F, Ding C (2018) \(R_{1}\)-2-DPCA and face recognition. IEEE Trans Cybern 49(4):1212–1223
4.
Zurück zum Zitat Lu Y, Yuan C, Li X (2018) Structurally incoherent low-rank 2DLPP for image classification. IEEE Trans Circuits Syst Video Technol 29(6):1701–1714 Lu Y, Yuan C, Li X (2018) Structurally incoherent low-rank 2DLPP for image classification. IEEE Trans Circuits Syst Video Technol 29(6):1701–1714
5.
Zurück zum Zitat Li W, Feng F, Li H (2018) Discriminant analysis-based dimension reduction for hyperspectral image classification: a survey of the most recent advances and an experimental comparison of different techniques. IEEE Geosci Remote Sens Mag 6(1):15–34 Li W, Feng F, Li H (2018) Discriminant analysis-based dimension reduction for hyperspectral image classification: a survey of the most recent advances and an experimental comparison of different techniques. IEEE Geosci Remote Sens Mag 6(1):15–34
7.
Zurück zum Zitat Li W, Du Q (2016) Laplacian regularized collaborative graph for discriminant analysis of hyperspectral imagery. IEEE Trans Geosci Remote Sens 54(12):7066–7076 Li W, Du Q (2016) Laplacian regularized collaborative graph for discriminant analysis of hyperspectral imagery. IEEE Trans Geosci Remote Sens 54(12):7066–7076
8.
Zurück zum Zitat Li W, Liu J, Du Q (2016) Sparse and low rank graph-based discriminant analysis for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(7):4094–4105 Li W, Liu J, Du Q (2016) Sparse and low rank graph-based discriminant analysis for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(7):4094–4105
9.
Zurück zum Zitat Kim K (2018) An improved semi-supervised dimensionality reduction using feature weighting: application to sentiment analysis. Expert Syst Appl 109:49–65 Kim K (2018) An improved semi-supervised dimensionality reduction using feature weighting: application to sentiment analysis. Expert Syst Appl 109:49–65
10.
Zurück zum Zitat Ma Y, Wu X (2018) Discriminant sparse and collaborative preserving embedding for bearing fault diagnosis. Neurocomputing 313:259–270 Ma Y, Wu X (2018) Discriminant sparse and collaborative preserving embedding for bearing fault diagnosis. Neurocomputing 313:259–270
11.
Zurück zum Zitat Yan S, Xu D, Zhang B (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51 Yan S, Xu D, Zhang B (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51
12.
Zurück zum Zitat Lai Z, Xu Y, Yang J (2017) Rotational invariant dimensionality reduction algorithms. IEEE Trans Cybern 47(11):3733–3746 Lai Z, Xu Y, Yang J (2017) Rotational invariant dimensionality reduction algorithms. IEEE Trans Cybern 47(11):3733–3746
13.
Zurück zum Zitat Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst 151:78–94 Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst 151:78–94
14.
Zurück zum Zitat Cai H, Zheng V, Chang K (2017) A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans Knowl Data Eng 30(9):1616–1637 Cai H, Zheng V, Chang K (2017) A comprehensive survey of graph embedding: problems, techniques and applications. IEEE Trans Knowl Data Eng 30(9):1616–1637
15.
Zurück zum Zitat Turk M, Pentland A (1991) Face recognition using eigenfaces. In: computer vision and pattern recognition, pp 586–591 Turk M, Pentland A (1991) Face recognition using eigenfaces. In: computer vision and pattern recognition, pp 586–591
16.
Zurück zum Zitat Martinez A, Kak A (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233 Martinez A, Kak A (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233
17.
Zurück zum Zitat He X, Niyogi P (2003) Locality preserving projections. In: neural information processing systems, pp 153–160 He X, Niyogi P (2003) Locality preserving projections. In: neural information processing systems, pp 153–160
18.
Zurück zum Zitat Lai Z, Xu Y, Chen Q, Yang J (2014) Multilinear sparse principal component analysis. IEEE Trans Neural Netw Learn Syst 25(10):1942–1950 Lai Z, Xu Y, Chen Q, Yang J (2014) Multilinear sparse principal component analysis. IEEE Trans Neural Netw Learn Syst 25(10):1942–1950
19.
Zurück zum Zitat Smallman L, Artemiou A, Morgan J (2018) Sparse generalised principal component analysis. Pattern Recognit 83:443–455 Smallman L, Artemiou A, Morgan J (2018) Sparse generalised principal component analysis. Pattern Recognit 83:443–455
20.
Zurück zum Zitat Mi J, Zhang Y, Lai Z, Li W (2019) Principal component analysis based on nuclear norm minimization. Neural Netw 118:1–16MATH Mi J, Zhang Y, Lai Z, Li W (2019) Principal component analysis based on nuclear norm minimization. Neural Netw 118:1–16MATH
21.
Zurück zum Zitat Wen J, Fang X, Cui J, Fei L (2019) Robust sparse linear discriminant analysis. IEEE Trans Circuits Syst Video Technol 29(2):390–403 Wen J, Fang X, Cui J, Fei L (2019) Robust sparse linear discriminant analysis. IEEE Trans Circuits Syst Video Technol 29(2):390–403
22.
Zurück zum Zitat Wan H, Wang H, Guo G (2017) Separability-oriented subclass discriminant analysis. IEEE Trans Pattern Anal Mach Intell 40(2):409–422 Wan H, Wang H, Guo G (2017) Separability-oriented subclass discriminant analysis. IEEE Trans Pattern Anal Mach Intell 40(2):409–422
23.
Zurück zum Zitat Zheng S, Ding C, Nie F (2019) Harmonic mean linear discriminant analysis. IEEE Trans Knowl Data Eng 31(8):1520–1531 Zheng S, Ding C, Nie F (2019) Harmonic mean linear discriminant analysis. IEEE Trans Knowl Data Eng 31(8):1520–1531
24.
Zurück zum Zitat Lu Y, Lai Z, Xu Y, Li X, Zhang D (2015) Low-rank preserving projections. IEEE Trans Cybern 46(8):1900–1913 Lu Y, Lai Z, Xu Y, Li X, Zhang D (2015) Low-rank preserving projections. IEEE Trans Cybern 46(8):1900–1913
25.
Zurück zum Zitat Zhang H, Wu QJ, Chow TW, Zhao M (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recognit 45(5):1866–1876MATH Zhang H, Wu QJ, Chow TW, Zhao M (2012) A two-dimensional neighborhood preserving projection for appearance-based face recognition. Pattern Recognit 45(5):1866–1876MATH
26.
Zurück zum Zitat Wang S, Xin Y, Kong D (2018) Unsupervised learning of human pose distance metric via sparsity locality preserving projections. IEEE Trans Multimedia 21(2):314–327 Wang S, Xin Y, Kong D (2018) Unsupervised learning of human pose distance metric via sparsity locality preserving projections. IEEE Trans Multimedia 21(2):314–327
27.
Zurück zum Zitat Chen W, Li C, Shao Y, Zhang J (2019) 2DRLPP: Robust two-dimensional locality preserving projection with regularization. Knowl Based Syst 169:53–66 Chen W, Li C, Shao Y, Zhang J (2019) 2DRLPP: Robust two-dimensional locality preserving projection with regularization. Knowl Based Syst 169:53–66
28.
Zurück zum Zitat Zhang W, Xue X, Lu H (2006) Discriminant neighborhood embedding for classification. Pattern Recognit 39(11):2240–2243MATH Zhang W, Xue X, Lu H (2006) Discriminant neighborhood embedding for classification. Pattern Recognit 39(11):2240–2243MATH
29.
Zurück zum Zitat Gou J, Yi Z (2013) Locality-based discriminant neighborhood embedding. Comput J 56(9):1063–1082 Gou J, Yi Z (2013) Locality-based discriminant neighborhood embedding. Comput J 56(9):1063–1082
30.
Zurück zum Zitat Ding C, Zhang L (2015) Double adjacency graphs-based discriminant neighborhood embedding. Pattern Recognit 48(5):1734–1742MATH Ding C, Zhang L (2015) Double adjacency graphs-based discriminant neighborhood embedding. Pattern Recognit 48(5):1734–1742MATH
32.
Zurück zum Zitat Wong W, Zhao H (2012) Supervised optimal locality preserving projection. Pattern Recognit 45(1):186–197MATH Wong W, Zhao H (2012) Supervised optimal locality preserving projection. Pattern Recognit 45(1):186–197MATH
33.
Zurück zum Zitat Gao Q, Liu J, Zhang H, Gao X, Li K (2013) Joint global and local structure discriminant analysis. IEEE Trans Inf Forens Secur 8(4):626–635 Gao Q, Liu J, Zhang H, Gao X, Li K (2013) Joint global and local structure discriminant analysis. IEEE Trans Inf Forens Secur 8(4):626–635
34.
Zurück zum Zitat Wang R, Nie F, Hong R (2017) Fast and orthogonal locality preserving projections for dimensionality reduction. IEEE Trans Image Process 26(10):5019–5030MathSciNetMATH Wang R, Nie F, Hong R (2017) Fast and orthogonal locality preserving projections for dimensionality reduction. IEEE Trans Image Process 26(10):5019–5030MathSciNetMATH
35.
Zurück zum Zitat Yang Z, Huang P, Wan M (2018) Discriminant maximum margin projections for face recognition. Multimedia Tools Appl 78(17):23847–23865 Yang Z, Huang P, Wan M (2018) Discriminant maximum margin projections for face recognition. Multimedia Tools Appl 78(17):23847–23865
36.
Zurück zum Zitat Hajizadeh R, Aghagolzadeh A, Ezoji M (2020) Local distances preserving based manifold learning. Expert Syst Appl 139:112860 Hajizadeh R, Aghagolzadeh A, Ezoji M (2020) Local distances preserving based manifold learning. Expert Syst Appl 139:112860
37.
Zurück zum Zitat Yi Y, Wang J, Zhou W (2019) Joint graph optimization and projection learning for dimensionality reduction. Pattern Recognit 92:258–273 Yi Y, Wang J, Zhou W (2019) Joint graph optimization and projection learning for dimensionality reduction. Pattern Recognit 92:258–273
38.
Zurück zum Zitat Xu Y, Zhong A, Yang J (2010) LPP solution schemes for use with face recognition. Pattern Recognit 43(12):4165–4176MATH Xu Y, Zhong A, Yang J (2010) LPP solution schemes for use with face recognition. Pattern Recognit 43(12):4165–4176MATH
39.
Zurück zum Zitat Wright J, Yang AY, Ganesh A (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227 Wright J, Yang AY, Ganesh A (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227
40.
Zurück zum Zitat Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition?. In: International conference on computer vision (ICCV2011), pp 471–478 Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: Which helps face recognition?. In: International conference on computer vision (ICCV2011), pp 471–478
41.
Zurück zum Zitat Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341MATH Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341MATH
42.
Zurück zum Zitat Gui J, Sun Z, Jia W (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognit 45(8):2884–2893MATH Gui J, Sun Z, Jia W (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognit 45(8):2884–2893MATH
43.
Zurück zum Zitat Yuan S, Mao X, Chen L (2019) Sparsity regularization discriminant projection for feature extraction. Neural Process Lett 49(2):539–553 Yuan S, Mao X, Chen L (2019) Sparsity regularization discriminant projection for feature extraction. Neural Process Lett 49(2):539–553
44.
Zurück zum Zitat Gao Q, Wang Q, Huang Y (2015) Dimensionality reduction by integrating sparse representation and fisher criterion and its applications. IEEE Trans Image Process 24(12):5684–5695MathSciNetMATH Gao Q, Wang Q, Huang Y (2015) Dimensionality reduction by integrating sparse representation and fisher criterion and its applications. IEEE Trans Image Process 24(12):5684–5695MathSciNetMATH
45.
Zurück zum Zitat Gou J, Du L, Cheng K (2016) Discriminative sparsity preserving graph embedding. In: IEEE congress on evolutionary computation, pp 4250–4257 Gou J, Du L, Cheng K (2016) Discriminative sparsity preserving graph embedding. In: IEEE congress on evolutionary computation, pp 4250–4257
46.
Zurück zum Zitat Gou J, Yi Z, Zhang D (2018) Sparsity and geometry preserving graph embedding for dimensionality reduction. IEEE Access 6:75748–75766 Gou J, Yi Z, Zhang D (2018) Sparsity and geometry preserving graph embedding for dimensionality reduction. IEEE Access 6:75748–75766
47.
Zurück zum Zitat Yin J, Lai Z, Zeng W (2018) Local sparsity preserving projection and its application to biometric recognition. Multimedia Tools Appl 77(1):1069–1092 Yin J, Lai Z, Zeng W (2018) Local sparsity preserving projection and its application to biometric recognition. Multimedia Tools Appl 77(1):1069–1092
48.
Zurück zum Zitat Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recognit 48(1):20–27 Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recognit 48(1):20–27
49.
Zurück zum Zitat Yin J, Wei L, Song M (2016) Optimized projection for collaborative representation based classification and its applications to face recognition. Pattern Recognit Lett 73:83–90 Yin J, Wei L, Song M (2016) Optimized projection for collaborative representation based classification and its applications to face recognition. Pattern Recognit Lett 73:83–90
50.
Zurück zum Zitat Hua J, Wang H, Ren M (2017) Collaborative representation analysis methods for feature extraction. Neural Comput Appl 28(1):225–231 Hua J, Wang H, Ren M (2017) Collaborative representation analysis methods for feature extraction. Neural Comput Appl 28(1):225–231
51.
Zurück zum Zitat Yuan M, Feng DZ (2019) Dimensionality reduction by collaborative preserving Fisher discriminant analysis. Neurocomputing 356:228–243 Yuan M, Feng DZ (2019) Dimensionality reduction by collaborative preserving Fisher discriminant analysis. Neurocomputing 356:228–243
52.
Zurück zum Zitat Huang P, Li T, Gao G (2018) Collaborative representation based local discriminant projection for feature extraction. Digital Signal Process 76:84–93MathSciNet Huang P, Li T, Gao G (2018) Collaborative representation based local discriminant projection for feature extraction. Digital Signal Process 76:84–93MathSciNet
Metadaten
Titel
Double graphs-based discriminant projections for dimensionality reduction
verfasst von
Jianping Gou
Ya Xue
Hongxing Ma
Yong Liu
Yongzhao Zhan
Jia Ke
Publikationsdatum
07.05.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 23/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04924-5

Weitere Artikel der Ausgabe 23/2020

Neural Computing and Applications 23/2020 Zur Ausgabe