Skip to main content
Erschienen in: Water Resources Management 8/2021

19.05.2021

Agricultural Water Use Efficiency and Driving Force Assessment to Improve Regional Productivity and Effectiveness

verfasst von: Xinchun Cao, Jianfeng Xiao, Mengyang Wu, Wen Zeng, Xuan Huang

Erschienen in: Water Resources Management | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Water use efficiency (WUE) improvements in agricultural production are of great significance to regional food security and ecological sustainability. Based on modified water footprint (WF) calculations for corn cultivation in China, WUE indices of water productivity (WP) and water efficiency (WE) for production capacity and the effective ratio of water resources were developed and quantified in the current study. Approaches to achieving national productive and effective improvements concurrently were sought by determining the spatial-temporal patterns and determinants of WP and WE during 1996–2015. The results show that the annual crop WF was estimated at 197.3 m³, including 14.1 % blue, 62.4 % green and 23.4 % gray components. WP and WE were calculated as 0.781 kg/m³ and 0.687, respectively, both of which increased over time in all subregions. Both WP and WE showed obvious spatial differences in the observed period. Low-value provinces were concentrated in the northwest and on the Huang-Huai-Hai Plain, and most high-value regions were distributed in the southeastern coastal zone. Agricultural production technology improvements contributed to WF reductions in specific areas, while meteorological elements and planting structure were the main factors affecting the spatial distribution of WP and WE. WF suppression in northwestern China and expansion of the production scale in southern China were conducive to increasing productive and effective agricultural water resource use in corn cultivation nationally. Agricultural production technology progress and crop spatial arrangement optimization are equally important to agricultural WUE enhancement in the WF framework.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allen RG, Pereira LS, Raes D et al (1998) Crop evapotranspiration: guidelines for computing crop water requirements, irrigation and drainage. FAO Irrigation and Drainage, Rome Allen RG, Pereira LS, Raes D et al (1998) Crop evapotranspiration: guidelines for computing crop water requirements, irrigation and drainage. FAO Irrigation and Drainage, Rome
Zurück zum Zitat Atzori G, Guidi NW, Caparrotta S et al (2019) Seawater and water footprint in different cropping systems: a chicory (cichorium intybus l.) case study. Agric Water Manag 211:172–177CrossRef Atzori G, Guidi NW, Caparrotta S et al (2019) Seawater and water footprint in different cropping systems: a chicory (cichorium intybus l.) case study. Agric Water Manag 211:172–177CrossRef
Zurück zum Zitat Berbel J, Gutiérrez-Martín C, Expósito A (2018) Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agric Water Manag 203:423–429CrossRef Berbel J, Gutiérrez-Martín C, Expósito A (2018) Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agric Water Manag 203:423–429CrossRef
Zurück zum Zitat Berger M, Campos J, Carolli M et al (2021) Advancing the water footprint into an instrument to support achieving the SDGs – recommendations from the “Water as a Global Resources” research initiative (GRoW). Water Resour Manag 35:1291–1298CrossRef Berger M, Campos J, Carolli M et al (2021) Advancing the water footprint into an instrument to support achieving the SDGs – recommendations from the “Water as a Global Resources” research initiative (GRoW). Water Resour Manag 35:1291–1298CrossRef
Zurück zum Zitat Cao X, Wu M, Guo X et al (2017) Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci Total Environ 609:587–597 Cao X, Wu M, Guo X et al (2017) Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci Total Environ 609:587–597
Zurück zum Zitat Cao X, Zeng W, Wu M et al (2020) Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation. Agric Water Manag 231:106027CrossRef Cao X, Zeng W, Wu M et al (2020) Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation. Agric Water Manag 231:106027CrossRef
Zurück zum Zitat Chouchane H, Krol MS, Hoekstra AY (2019) Changing global cropping patterns to minimize national blue water scarcity. Hydrol Earth Syst Sci 24(6):3015–3031CrossRef Chouchane H, Krol MS, Hoekstra AY (2019) Changing global cropping patterns to minimize national blue water scarcity. Hydrol Earth Syst Sci 24(6):3015–3031CrossRef
Zurück zum Zitat Exposito A, Berbel J (2019) Drivers of irrigation water productivity and basin closure process: analysis of the Guadalquivir river basin (Spain). Water Resour Manag 33(4):1439–1450CrossRef Exposito A, Berbel J (2019) Drivers of irrigation water productivity and basin closure process: analysis of the Guadalquivir river basin (Spain). Water Resour Manag 33(4):1439–1450CrossRef
Zurück zum Zitat Fatemeh K, Simunek J (2018) An application of the water footprint assessment to optimize production of crops irrigated with saline water: a scenario assessment with hydrus. Agric Water Manag 208:67–82CrossRef Fatemeh K, Simunek J (2018) An application of the water footprint assessment to optimize production of crops irrigated with saline water: a scenario assessment with hydrus. Agric Water Manag 208:67–82CrossRef
Zurück zum Zitat Flach R, Skalsk R, Folberth C et al (2020) Water productivity and footprint of major brazilian rainfed crops – a spatially explicit analysis of crop management scenarios. Agric Water Manag 233:105996CrossRef Flach R, Skalsk R, Folberth C et al (2020) Water productivity and footprint of major brazilian rainfed crops – a spatially explicit analysis of crop management scenarios. Agric Water Manag 233:105996CrossRef
Zurück zum Zitat González PR, Camacho PE, Montesinos P, García Morillo J, Rodríguez Díaz JA (2016) Influence of spatio temporal scales in crop water footprinting and water use management: evidences from sugar beet production in Northern Spain. J Clean Prod 139:1485–1495CrossRef González PR, Camacho PE, Montesinos P, García Morillo J, Rodríguez Díaz JA (2016) Influence of spatio temporal scales in crop water footprinting and water use management: evidences from sugar beet production in Northern Spain. J Clean Prod 139:1485–1495CrossRef
Zurück zum Zitat Hoekstra AY (2019) Green-blue water accounting in a soil water balance. Adv Water Resour 129(673):112–117CrossRef Hoekstra AY (2019) Green-blue water accounting in a soil water balance. Adv Water Resour 129(673):112–117CrossRef
Zurück zum Zitat Hoekstra AY, Chapagain AK, Aldaya MM et al (2011) The water footprint assessment manual: setting the global standard. Erthscan London, London Hoekstra AY, Chapagain AK, Aldaya MM et al (2011) The water footprint assessment manual: setting the global standard. Erthscan London, London
Zurück zum Zitat Huang X, Shi ZH, Zhu HD, Zhang HY, Ai L, Yin W (2016) Soil moisture dynamics within soil profiles and associated environmental controls. Catena 136:189–196CrossRef Huang X, Shi ZH, Zhu HD, Zhang HY, Ai L, Yin W (2016) Soil moisture dynamics within soil profiles and associated environmental controls. Catena 136:189–196CrossRef
Zurück zum Zitat Kayatz B, Harris F, Hillier J, Adhya T, Dalin C, Nayak D, Rosemary FG, Pete S, Alan DD (2019) "More crop per drop”: exploring india’s cereal water use since 2005. Sci Total Environ 673:207–217CrossRef Kayatz B, Harris F, Hillier J, Adhya T, Dalin C, Nayak D, Rosemary FG, Pete S, Alan DD (2019) "More crop per drop”: exploring india’s cereal water use since 2005. Sci Total Environ 673:207–217CrossRef
Zurück zum Zitat Lovarelli D, Bacenetti J, Fiala M (2016) Water footprint of crop productions: A review. Sci Total Environ 548:236–251CrossRef Lovarelli D, Bacenetti J, Fiala M (2016) Water footprint of crop productions: A review. Sci Total Environ 548:236–251CrossRef
Zurück zum Zitat Marston L, Ao Y, Konar M et al (2018) High-resolution water footprints of production of the united states. Water Resour Res 54:2288–2316CrossRef Marston L, Ao Y, Konar M et al (2018) High-resolution water footprints of production of the united states. Water Resour Res 54:2288–2316CrossRef
Zurück zum Zitat Mehrazar A, Massah B, Gohari A et al (2020) Adaptation of water resources system to water scarcity and climate change in the suburb area of Megacities. Water Resour Manag 34:3855–3877CrossRef Mehrazar A, Massah B, Gohari A et al (2020) Adaptation of water resources system to water scarcity and climate change in the suburb area of Megacities. Water Resour Manag 34:3855–3877CrossRef
Zurück zum Zitat Mekonnen MM, Hoekstra AY, Neale C et al (2020) Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric Water Manag 234:106122CrossRef Mekonnen MM, Hoekstra AY, Neale C et al (2020) Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric Water Manag 234:106122CrossRef
Zurück zum Zitat Multsch S, Krol MS, Pahlow M, Assunção ALC, Breuer L (2020) Assessment of potential implications of agricultural irrigation policy on surface water scarcity in brazil. Hydrol Earth Syst Sci 24:307–324CrossRef Multsch S, Krol MS, Pahlow M, Assunção ALC, Breuer L (2020) Assessment of potential implications of agricultural irrigation policy on surface water scarcity in brazil. Hydrol Earth Syst Sci 24:307–324CrossRef
Zurück zum Zitat Novoa V, Ahumada-Rudolph R, Rojas O, Sáez K, de la Barrera F, Arumí JL (2019) Understanding agricultural water footprint variability to improve water management in Chile. Sci Total Environ 670:188–199CrossRef Novoa V, Ahumada-Rudolph R, Rojas O, Sáez K, de la Barrera F, Arumí JL (2019) Understanding agricultural water footprint variability to improve water management in Chile. Sci Total Environ 670:188–199CrossRef
Zurück zum Zitat Sahoo S, Dhar A, Debsarkar A, Pradhan B, Alamri AM (2020) Future water use planning by water evaluation and planning system model. Water Resour Manag 34(15):4649–4664CrossRef Sahoo S, Dhar A, Debsarkar A, Pradhan B, Alamri AM (2020) Future water use planning by water evaluation and planning system model. Water Resour Manag 34(15):4649–4664CrossRef
Zurück zum Zitat Sedghamiz A, Reza Nikoo M, Heidarpour M, Sadegh M (2018) Developing a non-cooperative optimization model for water and crop area allocation based on leader-follower game. J Hydrol 567:51–59CrossRef Sedghamiz A, Reza Nikoo M, Heidarpour M, Sadegh M (2018) Developing a non-cooperative optimization model for water and crop area allocation based on leader-follower game. J Hydrol 567:51–59CrossRef
Zurück zum Zitat Shu R, Cao X, Wu M (2021) Clarifying regional water scarcity in agriculture based on the theory of blue, green and grey water footprints. Water Resour Manag 35(3):1101–1118CrossRef Shu R, Cao X, Wu M (2021) Clarifying regional water scarcity in agriculture based on the theory of blue, green and grey water footprints. Water Resour Manag 35(3):1101–1118CrossRef
Zurück zum Zitat Sun S, Fang C, Lv J (2017) Spatial inequality of water footprint in China: A detailed decomposition of inequality from water use types and drivers. J Hydrol 533:398–407CrossRef Sun S, Fang C, Lv J (2017) Spatial inequality of water footprint in China: A detailed decomposition of inequality from water use types and drivers. J Hydrol 533:398–407CrossRef
Zurück zum Zitat Wang W, Shao Q, Tao Y et al (2013) Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe river basin, China. Hydrol Process 27(8):1158–1174CrossRef Wang W, Shao Q, Tao Y et al (2013) Quantitative assessment of the impact of climate variability and human activities on runoff changes: a case study in four catchments of the Haihe river basin, China. Hydrol Process 27(8):1158–1174CrossRef
Zurück zum Zitat Wang Y, Long A, Xiang L, Deng X, Zhang P, Hai Y, Wang J, Li Y (2020) The verification of jevons’ paradox of agricultural water conservation in Tianshan district of china based on water footprint. Agric Water Manag 239:106163CrossRef Wang Y, Long A, Xiang L, Deng X, Zhang P, Hai Y, Wang J, Li Y (2020) The verification of jevons’ paradox of agricultural water conservation in Tianshan district of china based on water footprint. Agric Water Manag 239:106163CrossRef
Zurück zum Zitat Wu M, Cao X, Ren J, Shu R, Zeng W (2020) Formation mechanism and step effect analysis of the crop gray water footprint in rice production. Sci Total Environ 752:141897CrossRef Wu M, Cao X, Ren J, Shu R, Zeng W (2020) Formation mechanism and step effect analysis of the crop gray water footprint in rice production. Sci Total Environ 752:141897CrossRef
Zurück zum Zitat Xu Z, Chen X, Wu S, Gong M, Du Y, Wang J, Li Y, Liu J (2019) Spatial-temporal assessment of water footprint, water scarcity and crop water productivity in a major crop production region. J Clean Prod 224:375–383CrossRef Xu Z, Chen X, Wu S, Gong M, Du Y, Wang J, Li Y, Liu J (2019) Spatial-temporal assessment of water footprint, water scarcity and crop water productivity in a major crop production region. J Clean Prod 224:375–383CrossRef
Zurück zum Zitat Zhang Y, Huang K, Yu Y, Yang B (2017) Mapping of water footprint research: a bibliometric analysis during 2006–2015. J Clean Prod 149:70–79CrossRef Zhang Y, Huang K, Yu Y, Yang B (2017) Mapping of water footprint research: a bibliometric analysis during 2006–2015. J Clean Prod 149:70–79CrossRef
Metadaten
Titel
Agricultural Water Use Efficiency and Driving Force Assessment to Improve Regional Productivity and Effectiveness
verfasst von
Xinchun Cao
Jianfeng Xiao
Mengyang Wu
Wen Zeng
Xuan Huang
Publikationsdatum
19.05.2021
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 8/2021
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-021-02845-z

Weitere Artikel der Ausgabe 8/2021

Water Resources Management 8/2021 Zur Ausgabe