Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2013

01.12.2013 | Research Paper

Aircraft morphing wing design by using partial topology optimization

verfasst von: S. Sleesongsom, S. Bureerat, K. Tai

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A morphing wing concept has been investigated over the last decade because it can effectively enhance aircraft aerodynamic performance over a wider range of flight conditions through structural flexibility. The internal structural layouts and component sizes of a morphing aircraft wing have an impact on aircraft performance i.e. aeroelastic characteristics, mechanical behaviors, and mass. In this paper, a novel design approach is proposed for synthesizing the internal structural layout of a morphing wing. The new internal structures are achieved by using two new design strategies. The first design strategy applies design variables for simultaneous partial topology and sizing optimization while the second design strategy includes nodal positions as design variables. Both strategies are based on a ground structure approach. A multiobjective optimization problem is assigned to optimize the percentage of change in lift effectiveness, buckling factor, and mass of a structure subject to design constraints including divergence and flutter speeds, buckling factors, and stresses. The design problem is solved by using multiobjective population-based incremental learning (MOPBIL). The Pareto optimum results of both strategies lead to different unconventional wing structures which are superior to their conventional counterparts. From the results, the design strategy that uses simultaneous partial topology, sizing, and shape optimization is superior to the others based on a hypervolume indicator. The aeroelastic parameters of the obtained morphing wing subject to external actuating torques are analyzed and it is shown that it is practicable to apply the unconventional wing structures for an aircraft.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amadori K, Jouannet C, Krus P (2007) A framework for aerodynamic and structural optimization in conceptual design. Presented at the 25th AIAA applied aerodynamics conference, Florida, USA, 25–28 June 2007 Amadori K, Jouannet C, Krus P (2007) A framework for aerodynamic and structural optimization in conceptual design. Presented at the 25th AIAA applied aerodynamics conference, Florida, USA, 25–28 June 2007
Zurück zum Zitat Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. CMU_CS_95_163 Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. CMU_CS_95_163
Zurück zum Zitat Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12(3):269–283CrossRef Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12(3):269–283CrossRef
Zurück zum Zitat Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Optim 7:141–159CrossRef Bendsøe MP, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Optim 7:141–159CrossRef
Zurück zum Zitat Bendsøe M, Sigmund O (2003) Topology optimization. Springer, Germany Bendsøe M, Sigmund O (2003) Topology optimization. Springer, Germany
Zurück zum Zitat Bureerat S, Sriworamas K (2007) Population-based incremental learning for multiobjective optimization. Advan Soft Comput 39:223–232CrossRef Bureerat S, Sriworamas K (2007) Population-based incremental learning for multiobjective optimization. Advan Soft Comput 39:223–232CrossRef
Zurück zum Zitat Bureerat S, Srisomporn S (2010) Optimum plate-fin heat sinks by using a multiobjective evolutionary algorithm. Eng Optim 42(4):305–323MathSciNetCrossRef Bureerat S, Srisomporn S (2010) Optimum plate-fin heat sinks by using a multiobjective evolutionary algorithm. Eng Optim 42(4):305–323MathSciNetCrossRef
Zurück zum Zitat Cooper JE (2007) Adaptive aeroelastic structures. In: Wagg D, Bond I, Weaver P, Friswell M (eds) Adaptive structures: engineering applications. Wiley, England, pp 136–162 Cooper JE (2007) Adaptive aeroelastic structures. In: Wagg D, Bond I, Weaver P, Friswell M (eds) Adaptive structures: engineering applications. Wiley, England, pp 136–162
Zurück zum Zitat Dardel M, Bakhtiari-Nejad F (2010) A reduced order of complete aeroelastic model for limit cycle oscillations. Aero Sci Tech 14:95–105CrossRef Dardel M, Bakhtiari-Nejad F (2010) A reduced order of complete aeroelastic model for limit cycle oscillations. Aero Sci Tech 14:95–105CrossRef
Zurück zum Zitat Deb K, Pratap A, Meyarivan T (2001) Constrained test problems for multi-objective evolutionary optimization. Lect Notes Comput Sci 1993:284–298MathSciNetCrossRef Deb K, Pratap A, Meyarivan T (2001) Constrained test problems for multi-objective evolutionary optimization. Lect Notes Comput Sci 1993:284–298MathSciNetCrossRef
Zurück zum Zitat Eves J, Toropov VV, Thompson HM, Gaskell PH, Doherty JJ, Harris J (2009) Topology optimization of aircraft with non-conventional configurations. Presented at the 8th world congress on structural and multidisciplinary optimization, Lisbon, Portugal. 1–5 June 2009 Eves J, Toropov VV, Thompson HM, Gaskell PH, Doherty JJ, Harris J (2009) Topology optimization of aircraft with non-conventional configurations. Presented at the 8th world congress on structural and multidisciplinary optimization, Lisbon, Portugal. 1–5 June 2009
Zurück zum Zitat Friedrich T, Horoba C, Neumann F (2009) Multiplicative approximations and the hypervolume indicator. Presented at the genetic and evolutionary computation conference (GECCO’09), Montréal. Cannada. 8–12 July 2009 Friedrich T, Horoba C, Neumann F (2009) Multiplicative approximations and the hypervolume indicator. Presented at the genetic and evolutionary computation conference (GECCO’09), Montréal. Cannada. 8–12 July 2009
Zurück zum Zitat Hall KC (1994) Eigenanalysis of unsteady flows about airfoil, cascades, and wings. AIAA J 32(12): 2426–2432CrossRefMATH Hall KC (1994) Eigenanalysis of unsteady flows about airfoil, cascades, and wings. AIAA J 32(12): 2426–2432CrossRefMATH
Zurück zum Zitat Harder RL, Desmarais RN (1972) Interpolation using surface splines. J Aircraft 9(2):189–191CrossRef Harder RL, Desmarais RN (1972) Interpolation using surface splines. J Aircraft 9(2):189–191CrossRef
Zurück zum Zitat Harzen LU, Peter H (2008) Multilevel optimization in aircraft structural design evaluation. Comput Struct 86(1/2):104–118 Harzen LU, Peter H (2008) Multilevel optimization in aircraft structural design evaluation. Comput Struct 86(1/2):104–118
Zurück zum Zitat Inoyama D, Sander B, Joo J (2008) Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J Aircraft 45(6):1853–1862CrossRef Inoyama D, Sander B, Joo J (2008) Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J Aircraft 45(6):1853–1862CrossRef
Zurück zum Zitat Intachub U, Bureerat S (2006) Aeroelastic analysis of an aircraft wing structure-the use of a discrete-time model. Presented at the 20th Conference of Mechanical Engineering Network of Thailand, Nakhon Ratchasima, Thailand. 18–20 October 2006 Intachub U, Bureerat S (2006) Aeroelastic analysis of an aircraft wing structure-the use of a discrete-time model. Presented at the 20th Conference of Mechanical Engineering Network of Thailand, Nakhon Ratchasima, Thailand. 18–20 October 2006
Zurück zum Zitat Katz J, Plotkin A (1991) Low-speed aerodynamics from wing theory to panel methods. MCgraw-Hill, Singapore Katz J, Plotkin A (1991) Low-speed aerodynamics from wing theory to panel methods. MCgraw-Hill, Singapore
Zurück zum Zitat Kim JH, Kim YH, Choi SH, Park IW (2009) Evolutionary multiobjective optimization in robot soccer system for education. IEEE Comput Intell Mag 4(1):31–41MathSciNetCrossRef Kim JH, Kim YH, Choi SH, Park IW (2009) Evolutionary multiobjective optimization in robot soccer system for education. IEEE Comput Intell Mag 4(1):31–41MathSciNetCrossRef
Zurück zum Zitat Kittipichai R (2006) Multidisciplinary design optimization of active aeroelastic aircraft structures. In the faculty of engineering and physical sciences. University of Manchester, Manchester, UK Kittipichai R (2006) Multidisciplinary design optimization of active aeroelastic aircraft structures. In the faculty of engineering and physical sciences. University of Manchester, Manchester, UK
Zurück zum Zitat Kittipichai R, Cooper JE (2006) Optimization of UAVs with adaptive internal structures. Presented at the 5th ASMO conference. Oxford, UK, p 2004 Kittipichai R, Cooper JE (2006) Optimization of UAVs with adaptive internal structures. Presented at the 5th ASMO conference. Oxford, UK, p 2004
Zurück zum Zitat Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. Presented at the 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, New York, USA. 30 August–1 September, 2004 Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. Presented at the 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, New York, USA. 30 August–1 September, 2004
Zurück zum Zitat Kunakote T, Bureerat S (2011) Structural topology optimization using multiobjective evolutionary algorithms. Eng Optim 43(5):541–557MathSciNetCrossRef Kunakote T, Bureerat S (2011) Structural topology optimization using multiobjective evolutionary algorithms. Eng Optim 43(5):541–557MathSciNetCrossRef
Zurück zum Zitat Lencus A, Querin OM, Steven GP, Xie YM (2001) Aircraft wing design automation with ESO and GESO. Int J Veh Des 28(3):98–111 Lencus A, Querin OM, Steven GP, Xie YM (2001) Aircraft wing design automation with ESO and GESO. Int J Veh Des 28(3):98–111
Zurück zum Zitat Liu S, Ge W, Li S (2008) Optimal design of compliant trailing edge for shape changing. Chin J Aeronaut 21:187–192CrossRef Liu S, Ge W, Li S (2008) Optimal design of compliant trailing edge for shape changing. Chin J Aeronaut 21:187–192CrossRef
Zurück zum Zitat Lee HT, Kroo IM, Bieniawski S (2002) Flutter suppression for high aspect ratio flexible wings using microflaps. Presented at the 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Colorado, USA. 22–25 April 2002 Lee HT, Kroo IM, Bieniawski S (2002) Flutter suppression for high aspect ratio flexible wings using microflaps. Presented at the 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Colorado, USA. 22–25 April 2002
Zurück zum Zitat Lerner E, Markowitz J (1979) An efficient structural resizing procedure for meeting static aeroelastic design objectives. J Aircraft 16(2):65–71CrossRef Lerner E, Markowitz J (1979) An efficient structural resizing procedure for meeting static aeroelastic design objectives. J Aircraft 16(2):65–71CrossRef
Zurück zum Zitat Lu KJ, Kota S (2003) Design of compliant mechanism for morphing structural shapes. J Intell Mater Syst Struct 14(6):379–391CrossRef Lu KJ, Kota S (2003) Design of compliant mechanism for morphing structural shapes. J Intell Mater Syst Struct 14(6):379–391CrossRef
Zurück zum Zitat Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27(1–2):27–42CrossRef Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27(1–2):27–42CrossRef
Zurück zum Zitat Maute K, Reich GW (2006) Integrated multidisciplinary topology optimization approach to adaptive wing design. J Aircraft 43(1):253–263CrossRef Maute K, Reich GW (2006) Integrated multidisciplinary topology optimization approach to adaptive wing design. J Aircraft 43(1):253–263CrossRef
Zurück zum Zitat Nantasenee S, Sleesongsom S, Bureerat S (2009) Comparing flutter analysis programs for low air-vehicles. Presented at the 23rd conference of mechanical engineering Network of Thailand, Chiang Mai, Thailand. 4–7 November 2009, (in Thai) Nantasenee S, Sleesongsom S, Bureerat S (2009) Comparing flutter analysis programs for low air-vehicles. Presented at the 23rd conference of mechanical engineering Network of Thailand, Chiang Mai, Thailand. 4–7 November 2009, (in Thai)
Zurück zum Zitat Pendelton E (2000) Back to the future: how aeroelastic wings are a return to aviation’s beginnings and a small step to future bird like wings. In: RTO ATV symposium on active control technology for enhanced performance operational capabilities of military aircraft, land vehicles and sea vehicles. Germany Pendelton E (2000) Back to the future: how aeroelastic wings are a return to aviation’s beginnings and a small step to future bird like wings. In: RTO ATV symposium on active control technology for enhanced performance operational capabilities of military aircraft, land vehicles and sea vehicles. Germany
Zurück zum Zitat Rao JS, Kiran S, Kamesh JV, Padmanabhan MA, Chandra S (2009) Topology optimization of aircraft wing. J Aero Sci Tech 61(3):402–414 Rao JS, Kiran S, Kamesh JV, Padmanabhan MA, Chandra S (2009) Topology optimization of aircraft wing. J Aero Sci Tech 61(3):402–414
Zurück zum Zitat Rothwell A (1991) Multi-level optimization of aircraft shell structures. Thin-Walled Struct 11(1/2):85–103CrossRef Rothwell A (1991) Multi-level optimization of aircraft shell structures. Thin-Walled Struct 11(1/2):85–103CrossRef
Zurück zum Zitat Saggere L, Kota S (1999) Static shape control of smart structures using compliant mechanisms. AIAA J 37(5):572–578CrossRef Saggere L, Kota S (1999) Static shape control of smart structures using compliant mechanisms. AIAA J 37(5):572–578CrossRef
Zurück zum Zitat Saitou K, Izui K, Nishiwaki S, Papalambros P (2005) A survey of structural optimization in mechanical product development. Trans ASME 5:214–226 Saitou K, Izui K, Nishiwaki S, Papalambros P (2005) A survey of structural optimization in mechanical product development. Trans ASME 5:214–226
Zurück zum Zitat Sensmeier MD, Samareh JA (2004) A study of vehicle structural layouts in post-WWII aircraft. Presented at the 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, California, USA. 19–22 April 2004 Sensmeier MD, Samareh JA (2004) A study of vehicle structural layouts in post-WWII aircraft. Presented at the 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, California, USA. 19–22 April 2004
Zurück zum Zitat Sleesongsom S, Bureerat S (2011) Effect of actuating forces on aeroelastic characteristics of a morphing aircraft wing. Appl Mech Mater 52–54:308–317CrossRef Sleesongsom S, Bureerat S (2011) Effect of actuating forces on aeroelastic characteristics of a morphing aircraft wing. Appl Mech Mater 52–54:308–317CrossRef
Zurück zum Zitat Sleesongsom S, Bureerat S (2013) New conceptual design of aeroelastic wing structures by multiobjective optimization. Eng Optim 45(1):107–122MathSciNetCrossRef Sleesongsom S, Bureerat S (2013) New conceptual design of aeroelastic wing structures by multiobjective optimization. Eng Optim 45(1):107–122MathSciNetCrossRef
Zurück zum Zitat Sofla AYN, Meguid SA, Tan KT, Yeo WK (2010) Shape morphing of aircraft wing: status and challenges. Mater Des 31(3):1284–1292CrossRef Sofla AYN, Meguid SA, Tan KT, Yeo WK (2010) Shape morphing of aircraft wing: status and challenges. Mater Des 31(3):1284–1292CrossRef
Zurück zum Zitat Stanford B, Ifju P (2009) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidiscip Optim 38(3):301–316CrossRef Stanford B, Ifju P (2009) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidiscip Optim 38(3):301–316CrossRef
Zurück zum Zitat Tang D, Dowell EH, Hall KC (1999) Limit cycle oscillation of a cantilevered wing in low subsonic flow. AIAA J 37(3):364–371CrossRef Tang D, Dowell EH, Hall KC (1999) Limit cycle oscillation of a cantilevered wing in low subsonic flow. AIAA J 37(3):364–371CrossRef
Zurück zum Zitat Wang W, Guo S, Yang W (2010) Simultaneous partial topology and size optimization of a wing structure using ant colony and gradient based methods. Eng Optim 43(44):433–446MathSciNet Wang W, Guo S, Yang W (2010) Simultaneous partial topology and size optimization of a wing structure using ant colony and gradient based methods. Eng Optim 43(44):433–446MathSciNet
Zurück zum Zitat Xu Y, Li S, Rong X (2005) Composite structural optimization by genetic algorithm and neural network response surface modeling. Chin J Aeroelast 18(4):310–316 Xu Y, Li S, Rong X (2005) Composite structural optimization by genetic algorithm and neural network response surface modeling. Chin J Aeroelast 18(4):310–316
Metadaten
Titel
Aircraft morphing wing design by using partial topology optimization
verfasst von
S. Sleesongsom
S. Bureerat
K. Tai
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2013
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-013-0944-3

Weitere Artikel der Ausgabe 6/2013

Structural and Multidisciplinary Optimization 6/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.