Skip to main content
Erschienen in: Cellulose 1/2016

15.12.2015 | Original Paper

All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-urea solvent system

verfasst von: Benoît Duchemin, Déborah Le Corre, Nolwenn Leray, Alain Dufresne, Mark P. Staiger

Erschienen in: Cellulose | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All-cellulose composites were produced by partial dissolution of two cellulosic sources in a mixture of sodium hydroxide and urea at low temperature. Filter paper (FP) and microfibrillated cellulose (MFC) were used to examine the role of the fiber dimensions of the initial reinforcing network on the final mechanical properties of thin self-reinforced all-cellulose composites. The dissolution time was used to control the extent of the transformation. The initial fiber structure was progressively transformed into a thoroughly consolidated composite material. X-ray diffraction and Fourier-transform infrared spectroscopy were able to show that the initial cellulose I allomorph was replaced with a cellulose II allomorph. FP underwent a fast crystallinity loss and transformation to cellulose II. In contrast, the crystallinity of MFC decreased slowly after dissolution. This result was also correlated with a slower allomorphic transformation. The crystallinity of MFC decreased to a level comparable to that of FP after 40 min and it remained comparatively unaffected at extended dissolution times. Comparison between powder and transmission XRD measurements demonstrated that the cellulose II present in all films after dissolution was strongly textured with its (1\(\bar{1}\)0) plane lying parallel to the sample surface despite fibrous microstructural features remaining from the initial substrates. The tensile strength and elastic modulus of FP increased significantly (+690 and +528 %, respectively) after only 20 min, while that of MFC remained relatively unaltered as a function of the dissolution time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bellesia G, Gnanakaran S (2013) Sodium chloride interaction with solvated and crystalline cellulose: sodium ion affects the cellotetraose molecule and the cellulose fibril in aqueous solution. Cellulose 20:2695–2702. doi:10.1007/s10570-013-0063-8 CrossRef Bellesia G, Gnanakaran S (2013) Sodium chloride interaction with solvated and crystalline cellulose: sodium ion affects the cellotetraose molecule and the cellulose fibril in aqueous solution. Cellulose 20:2695–2702. doi:10.​1007/​s10570-013-0063-8 CrossRef
Zurück zum Zitat Bras J (2004) Etudes des propriétés barrières de dérivés cellulosiques: application au gel de cellulose du papier sulfurisé. INPT, Toulouse Bras J (2004) Etudes des propriétés barrières de dérivés cellulosiques: application au gel de cellulose du papier sulfurisé. INPT, Toulouse
Zurück zum Zitat Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRef Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRef
Zurück zum Zitat Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci, Part B: Polym Phys 44:3093CrossRef Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci, Part B: Polym Phys 44:3093CrossRef
Zurück zum Zitat Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRef
Zurück zum Zitat Carillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef Carillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef
Zurück zum Zitat Cartier N, Escaffre P, Mathevet F et al (1994) Structure and recycling of vegetable parchment. Tappi J 77:95–100 Cartier N, Escaffre P, Mathevet F et al (1994) Structure and recycling of vegetable parchment. Tappi J 77:95–100
Zurück zum Zitat de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca
Zurück zum Zitat Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18. doi:10.1023/A:1015877021688 CrossRef Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18. doi:10.​1023/​A:​1015877021688 CrossRef
Zurück zum Zitat Duchemin B (2008) Structure, property and processing relationships of all-cellulose composites. Ph.D. thesis, University of Canterbury Duchemin B (2008) Structure, property and processing relationships of all-cellulose composites. Ph.D. thesis, University of Canterbury
Zurück zum Zitat Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320CrossRef Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320CrossRef
Zurück zum Zitat Duchemin BJC, Newman RH, Staiger MP (2009b) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230CrossRef Duchemin BJC, Newman RH, Staiger MP (2009b) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230CrossRef
Zurück zum Zitat Egal M (2006) Structure and properties of cellulose/NaOH aqueous solutions, gels and regenerated objects. Ecole des mines de Paris Egal M (2006) Structure and properties of cellulose/NaOH aqueous solutions, gels and regenerated objects. Ecole des mines de Paris
Zurück zum Zitat Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM (2011) Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J Chem Eng Data 56:31–34. doi:10.1021/je1007235 CrossRef Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM (2011) Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J Chem Eng Data 56:31–34. doi:10.​1021/​je1007235 CrossRef
Zurück zum Zitat Fink H-P, Weigel P, Purz HJ, Bohn A (1998) Structural aspects of new cellulose fibres and films from NMMO-solution. Recent Res Polym Sci 2:387–403 Fink H-P, Weigel P, Purz HJ, Bohn A (1998) Structural aspects of new cellulose fibres and films from NMMO-solution. Recent Res Polym Sci 2:387–403
Zurück zum Zitat Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef
Zurück zum Zitat Flandin L, Cavaillé JY, Bidan G, Brechet Y (2000) New nanocomposite materials made of an insulating matrix and conducting fillers: processing and properties. Polym Compos 21:165–174. doi:10.1002/pc.10174 CrossRef Flandin L, Cavaillé JY, Bidan G, Brechet Y (2000) New nanocomposite materials made of an insulating matrix and conducting fillers: processing and properties. Polym Compos 21:165–174. doi:10.​1002/​pc.​10174 CrossRef
Zurück zum Zitat Gjønnes J, Norman N (1958) The use of half width and position of the lines in the x-ray diffractograms of native cellulose to characterize the structural properties of the samples. Acta Chem Scand 12:2028–2033CrossRef Gjønnes J, Norman N (1958) The use of half width and position of the lines in the x-ray diffractograms of native cellulose to characterize the structural properties of the samples. Acta Chem Scand 12:2028–2033CrossRef
Zurück zum Zitat Gjønnes J, Norman N (1960) X-ray investigations on cellulose II and mixtures of cellulose I and II. 2. Lateral order in cellulose II. Acta Chem Scand 14:689–691CrossRef Gjønnes J, Norman N (1960) X-ray investigations on cellulose II and mixtures of cellulose I and II. 2. Lateral order in cellulose II. Acta Chem Scand 14:689–691CrossRef
Zurück zum Zitat Hinterstoisser B, Salmen L (2000) Application of dynamic 2D FTIR to cellulose. Vib Spectrosc 22:111–118CrossRef Hinterstoisser B, Salmen L (2000) Application of dynamic 2D FTIR to cellulose. Vib Spectrosc 22:111–118CrossRef
Zurück zum Zitat Isogai A (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef Isogai A (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRef
Zurück zum Zitat Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRef
Zurück zum Zitat Kondo T, Sawatari C (1996) A fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399CrossRef Kondo T, Sawatari C (1996) A fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399CrossRef
Zurück zum Zitat Laszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876CrossRef Laszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876CrossRef
Zurück zum Zitat Lee CM, Mittal A, Barnette AL et al (2013) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20:991–1000. doi:10.1007/s10570-013-9917-3 CrossRef Lee CM, Mittal A, Barnette AL et al (2013) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20:991–1000. doi:10.​1007/​s10570-013-9917-3 CrossRef
Zurück zum Zitat Lourdin D, Peixinho J, Bréard J et al (2015) Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites. Cellulose. doi:10.1007/s10570-015-0805-x Lourdin D, Peixinho J, Bréard J et al (2015) Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites. Cellulose. doi:10.​1007/​s10570-015-0805-x
Zurück zum Zitat Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRef Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRef
Zurück zum Zitat Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef
Zurück zum Zitat Murdock CC (1930) The form of the X-ray diffraction bands for regular crystals of colloidal size. Phys Rev 35:8–23CrossRef Murdock CC (1930) The form of the X-ray diffraction bands for regular crystals of colloidal size. Phys Rev 35:8–23CrossRef
Zurück zum Zitat Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef
Zurück zum Zitat Nelson ML, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef Nelson ML, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef
Zurück zum Zitat Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fibre diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fibre diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Oh SY, Yoo DI, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRef Oh SY, Yoo DI, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRef
Zurück zum Zitat Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787CrossRef Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787CrossRef
Zurück zum Zitat Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602. doi:10.1021/bm9001975 CrossRef Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602. doi:10.​1021/​bm9001975 CrossRef
Zurück zum Zitat Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Sobue H, Kiessig H, Hess K (1939) Das system cellulose-natriumhydroxyd-wasser in ahhängigkeit von der temperature. Ztg Phys Chem B43:309–328 Sobue H, Kiessig H, Hess K (1939) Das system cellulose-natriumhydroxyd-wasser in ahhängigkeit von der temperature. Ztg Phys Chem B43:309–328
Zurück zum Zitat Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224. doi:10.1021/bm901383a CrossRef Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224. doi:10.​1021/​bm901383a CrossRef
Zurück zum Zitat Yamashiki T, Matsui T, Saitoh M et al (1990) Characterisation of cellulose treated by the steam explosion method. Part 2: effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128CrossRef Yamashiki T, Matsui T, Saitoh M et al (1990) Characterisation of cellulose treated by the steam explosion method. Part 2: effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128CrossRef
Zurück zum Zitat Yue Y, Han J, Han G et al (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447. doi:10.1016/j.carbpol.2015.07.058 CrossRef Yue Y, Han J, Han G et al (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447. doi:10.​1016/​j.​carbpol.​2015.​07.​058 CrossRef
Zurück zum Zitat Zhang L (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40:5923CrossRef Zhang L (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40:5923CrossRef
Zurück zum Zitat Zhang S, Li F-X, Yu J-Y (2011) Rheological properties of cellulose-NaOH complex solutions: from dilute to concentrated states. Cellul Chem Technol 45:313 Zhang S, Li F-X, Yu J-Y (2011) Rheological properties of cellulose-NaOH complex solutions: from dilute to concentrated states. Cellul Chem Technol 45:313
Zurück zum Zitat Zhou J, Zhang L, Cai J (2004) Behavior of cellulose in NaOH/Urea aqueous solution characterized by light scattering and viscometry. J Polym Sci, Part B: Polym Phys 42:347–353CrossRef Zhou J, Zhang L, Cai J (2004) Behavior of cellulose in NaOH/Urea aqueous solution characterized by light scattering and viscometry. J Polym Sci, Part B: Polym Phys 42:347–353CrossRef
Metadaten
Titel
All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-urea solvent system
verfasst von
Benoît Duchemin
Déborah Le Corre
Nolwenn Leray
Alain Dufresne
Mark P. Staiger
Publikationsdatum
15.12.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0835-4

Weitere Artikel der Ausgabe 1/2016

Cellulose 1/2016 Zur Ausgabe