Skip to main content

2013 | OriginalPaper | Buchkapitel

27. Alternative Methods for the Extraction of Hydrocarbons from Botryococcus braunii

verfasst von : Chiara Samorì, Cristian Torri

Erschienen in: Advanced Biofuels and Bioproducts

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lipid extraction is a critical step in the development of biofuels from microalgae. The use of toxic and polluting organic solvents should be reduced and the sustainability of the extraction procedures improved in order to develop an industrial extraction procedure. This could be done by reducing solvent amounts, avoiding use of harmful solvents, or eliminating the solvent at all. Here we describe two new processes to extract hydrocarbons from dried and water-suspended samples of the microalga Botryococcus braunii. The first one is a solvent-based procedure with switchable polarity solvents (SPS), a special class of green solvents easily convertible from a non-ionic form, with a high affinity towards non-polar compounds as B. braunii hydrocarbons, into an ionic salt after the addition of CO2, useful to recover hydrocarbons. The two SPS chosen for the study, based on equimolar mixtures of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) and an alcohol (DBU/octanol and DBU/ethanol), were tested for the extraction efficiency of lipids from freeze-dried B. braunii samples and compared with volatile organic solvents extraction. The DBU/octanol system was further evaluated for the extraction of hydrocarbons directly from algal culture samples. DBU/octanol exhibited the highest yields of extracted hydrocarbons from both freeze-dried and liquid algal samples (16 and 8.2%, respectively, against 7.8 and 5.6% with traditional organic solvents). The second procedure here proposed is the thermochemical conversion of algal biomass by using pyrolysis; this process allowed to obtain three valuable fractions, exploitable for energy purpose, fuel production, and soil carbon storage: a volatile fraction (37% on dry biomass weight), a solid fraction called biochar (38%) and, above all, a liquid fraction named bio-oil (25%), almost entirely composed by hydrocarbon-like material, thus directly usable as fuel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Williams PJL (2007) Biofuel: microalgae cut the social and ecological costs. Nature 450:478CrossRef Williams PJL (2007) Biofuel: microalgae cut the social and ecological costs. Nature 450:478CrossRef
2.
Zurück zum Zitat Hu Q, Sommerfeld M, Jarvis E (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639CrossRef Hu Q, Sommerfeld M, Jarvis E (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639CrossRef
3.
Zurück zum Zitat Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRef Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRef
4.
Zurück zum Zitat Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRef Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRef
5.
Zurück zum Zitat Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels-A process view. J Biotechnol 142(1):64–69CrossRef Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels-A process view. J Biotechnol 142(1):64–69CrossRef
6.
Zurück zum Zitat An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15(2–3):185–191CrossRef An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15(2–3):185–191CrossRef
7.
Zurück zum Zitat Shen Y, Yuan W, Pei Z, Mao E (2008) Culture of microalga Botryococcus in livestock wastewater. T Asabe 51(4):1395–1400 Shen Y, Yuan W, Pei Z, Mao E (2008) Culture of microalga Botryococcus in livestock wastewater. T Asabe 51(4):1395–1400
8.
Zurück zum Zitat Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:S475–S479CrossRef Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38:S475–S479CrossRef
9.
Zurück zum Zitat Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718CrossRef Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718CrossRef
10.
Zurück zum Zitat Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19(5):430–436CrossRef Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19(5):430–436CrossRef
11.
Zurück zum Zitat Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRef Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRef
12.
Zurück zum Zitat Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352CrossRef Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352CrossRef
13.
Zurück zum Zitat Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):349–350CrossRef Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):349–350CrossRef
14.
Zurück zum Zitat Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496CrossRef Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496CrossRef
15.
Zurück zum Zitat Templier J, Largeau C, Casadevall E (1987) Effect of various inhibitors on biosynthesis of non-isoprenoid hydrocarbons in Botryococcus braunii. Phytochemistry 26:377–383CrossRef Templier J, Largeau C, Casadevall E (1987) Effect of various inhibitors on biosynthesis of non-isoprenoid hydrocarbons in Botryococcus braunii. Phytochemistry 26:377–383CrossRef
16.
Zurück zum Zitat ChanYong TP, Largeau C, Casadevall E (1986) Biosynthesis of non-isoprenoid hydrocarbons by the microalga Botryococcus braunii: evidence for an elongation decarboxylation mechanism; activation of decarboxylation. Nouv J Chim 10:701–707 ChanYong TP, Largeau C, Casadevall E (1986) Biosynthesis of non-isoprenoid hydrocarbons by the microalga Botryococcus braunii: evidence for an elongation decarboxylation mechanism; activation of decarboxylation. Nouv J Chim 10:701–707
17.
Zurück zum Zitat Metzger P, Casadevall E, Pouet MJ, Pouet Y (1985) Structures of some botryococcenes: branched hydrocarbons from the b-race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002CrossRef Metzger P, Casadevall E, Pouet MJ, Pouet Y (1985) Structures of some botryococcenes: branched hydrocarbons from the b-race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002CrossRef
18.
Zurück zum Zitat Metzger P, Berkaloff C, Casadevall E, Coute A (1985) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312CrossRef Metzger P, Berkaloff C, Casadevall E, Coute A (1985) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312CrossRef
19.
Zurück zum Zitat Yamaguchi K, Nakano H, Murakami M, Konosu S, Nakayama O, Kanda M, Nakamura A, Iwamoto H (1987) Lipid composition of a green alga, Botryococcus braunii. Agric Biol Chem 51(2):493–498CrossRef Yamaguchi K, Nakano H, Murakami M, Konosu S, Nakayama O, Kanda M, Nakamura A, Iwamoto H (1987) Lipid composition of a green alga, Botryococcus braunii. Agric Biol Chem 51(2):493–498CrossRef
20.
Zurück zum Zitat Jae-Yon L, Chan Y, So-Young J, Chi-Yong A, Hee-Mock O (2010) Comparison of several methods for effective lipid extraction from microalgae. Biores Technol 101:S75–S77CrossRef Jae-Yon L, Chan Y, So-Young J, Chi-Yong A, Hee-Mock O (2010) Comparison of several methods for effective lipid extraction from microalgae. Biores Technol 101:S75–S77CrossRef
21.
Zurück zum Zitat Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274CrossRef Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274CrossRef
22.
Zurück zum Zitat Erikson DR (1995) Practical handbook of soybean processing and utilisation. AOCS Press and United Soybean Board, St. Louis Erikson DR (1995) Practical handbook of soybean processing and utilisation. AOCS Press and United Soybean Board, St. Louis
23.
Zurück zum Zitat Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334CrossRef Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334CrossRef
24.
Zurück zum Zitat Mendes RL, Coelho JP, Fernandes HL (1995) Applications of supercritical CO2 extraction to microalgae and plants. J Chem Technol Biotechnol 62:53–59CrossRef Mendes RL, Coelho JP, Fernandes HL (1995) Applications of supercritical CO2 extraction to microalgae and plants. J Chem Technol Biotechnol 62:53–59CrossRef
25.
Zurück zum Zitat Samorì C, Torri C, Samorì G, Fabbri D, Galletti P, Guerrini F, Pistocchi R, Tagliavini E (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Biores Technol 101:3274–3279CrossRef Samorì C, Torri C, Samorì G, Fabbri D, Galletti P, Guerrini F, Pistocchi R, Tagliavini E (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Biores Technol 101:3274–3279CrossRef
26.
Zurück zum Zitat Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Reversible non polar-to-polar solvent. Nature 436:1102CrossRef Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Reversible non polar-to-polar solvent. Nature 436:1102CrossRef
27.
Zurück zum Zitat Jessop PG, Phan L, Brown H, White J, Hodgson A (2009) Soybean oil extraction and separation using switchable or expanded solvents. Green Chem 11:53–59CrossRef Jessop PG, Phan L, Brown H, White J, Hodgson A (2009) Soybean oil extraction and separation using switchable or expanded solvents. Green Chem 11:53–59CrossRef
28.
Zurück zum Zitat Pan P, Hu C, Weinyan Y, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of nannochloropsis sp. Residue for renewable bio-oils. Biores Technol 101:4593–4599CrossRef Pan P, Hu C, Weinyan Y, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of nannochloropsis sp. Residue for renewable bio-oils. Biores Technol 101:4593–4599CrossRef
30.
Zurück zum Zitat Samorì G (2008) Caratterizzazione chimico-biologica di Botryococcus braunii (Chlorophyceae) per la produzione di biocombustibili. Master degree Thesis, University of Bologna, Italy Samorì G (2008) Caratterizzazione chimico-biologica di Botryococcus braunii (Chlorophyceae) per la produzione di biocombustibili. Master degree Thesis, University of Bologna, Italy
31.
Zurück zum Zitat Samorì C (2010) Use of solvents and environmental friendly materials for applications in Green Chemistry. Ph.D. Thesis, University of Bologna, Italy Samorì C (2010) Use of solvents and environmental friendly materials for applications in Green Chemistry. Ph.D. Thesis, University of Bologna, Italy
32.
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275
33.
Zurück zum Zitat Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRef Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRef
34.
Zurück zum Zitat Largeau C, Casadevall E, Berkaloff C, Dhmelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051CrossRef Largeau C, Casadevall E, Berkaloff C, Dhmelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051CrossRef
35.
Zurück zum Zitat Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRef Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRef
36.
Zurück zum Zitat Metzger P, Largeau C (2002) Natural polyacetals. In: Steinbüchel A (ed) Biopolymers, vol 9. Wiley-VCH, Weinheim, pp 113–127 Metzger P, Largeau C (2002) Natural polyacetals. In: Steinbüchel A (ed) Biopolymers, vol 9. Wiley-VCH, Weinheim, pp 113–127
37.
Zurück zum Zitat Metzger P, Casadevall E (1991) Botryococcoid ethers, ether lipids from Botryococcus braunii. Phytochemistry 30:1439–1444CrossRef Metzger P, Casadevall E (1991) Botryococcoid ethers, ether lipids from Botryococcus braunii. Phytochemistry 30:1439–1444CrossRef
38.
Zurück zum Zitat Metzger P, Casadevall E (1992) Ether lipids from Botryococcus braunii and their biosynthesis. Phytochemistry 31:2341–2349CrossRef Metzger P, Casadevall E (1992) Ether lipids from Botryococcus braunii and their biosynthesis. Phytochemistry 31:2341–2349CrossRef
39.
Zurück zum Zitat Metzger P (1994) Phenolic ether lipids with an n-alkenylresorcinol moiety from a Bolivian strain of Botryococcus braunii (A race). Phytochemistry 36:195–212CrossRef Metzger P (1994) Phenolic ether lipids with an n-alkenylresorcinol moiety from a Bolivian strain of Botryococcus braunii (A race). Phytochemistry 36:195–212CrossRef
40.
Zurück zum Zitat Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL (2005) The reaction of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) with carbon dioxide. J Org Chem 70:5335–5338CrossRef Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL (2005) The reaction of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) with carbon dioxide. J Org Chem 70:5335–5338CrossRef
41.
Zurück zum Zitat Munshi P, Main AD, Linehan J, Tai CC, Jessop PG (2002) Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines. J Am Chem Soc 124(27):7963–7971CrossRef Munshi P, Main AD, Linehan J, Tai CC, Jessop PG (2002) Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines. J Am Chem Soc 124(27):7963–7971CrossRef
42.
Zurück zum Zitat Prez ER, Santos RHA, Gambardella MTP, de Macedo LGM, Rodrigues-Filho UP, Launay J, Franco DW (2004) Activation of carbon dioxide by bicyclic amidines. J Org Chem 69:8005–8011CrossRef Prez ER, Santos RHA, Gambardella MTP, de Macedo LGM, Rodrigues-Filho UP, Launay J, Franco DW (2004) Activation of carbon dioxide by bicyclic amidines. J Org Chem 69:8005–8011CrossRef
43.
Zurück zum Zitat Phan L, Chiu D, Heldebrant DJ, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert CA, Liotta CL, Jessop PG (2008) Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind Eng Chem Res 47(3):539–545CrossRef Phan L, Chiu D, Heldebrant DJ, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert CA, Liotta CL, Jessop PG (2008) Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind Eng Chem Res 47(3):539–545CrossRef
44.
Zurück zum Zitat Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. T Asae 44(6):1429–1436 Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. T Asae 44(6):1429–1436
45.
Zurück zum Zitat Frenz J, Largeau C, Casadevall E (1989) Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme Microb Technol 11(11):717–724CrossRef Frenz J, Largeau C, Casadevall E (1989) Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enzyme Microb Technol 11(11):717–724CrossRef
46.
Zurück zum Zitat Fabbri D, Torri C, Mancini I (2007) Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block. Green Chem 9:1374–1379CrossRef Fabbri D, Torri C, Mancini I (2007) Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block. Green Chem 9:1374–1379CrossRef
47.
Zurück zum Zitat Torri C, Fabbri D (2009) Application of off-line pyrolysis with dynamic solid-phase microextraction to the GC-MS analysis of biomass pyrolysis products. Microchem J 93:133–139CrossRef Torri C, Fabbri D (2009) Application of off-line pyrolysis with dynamic solid-phase microextraction to the GC-MS analysis of biomass pyrolysis products. Microchem J 93:133–139CrossRef
48.
Zurück zum Zitat Torri C, Lesci IG, Fabbri D (2009) Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. J Anal Appl Pyrol 85:192–196CrossRef Torri C, Lesci IG, Fabbri D (2009) Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. J Anal Appl Pyrol 85:192–196CrossRef
Metadaten
Titel
Alternative Methods for the Extraction of Hydrocarbons from Botryococcus braunii
verfasst von
Chiara Samorì
Cristian Torri
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3348-4_27