Skip to main content

2023 | OriginalPaper | Buchkapitel

An Accurate Algorithm for Identifying Mutually Exclusive Patterns on Multiple Sets of Genomic Mutations

verfasst von : Siyu He, Jiayin Wang, Zhongmeng Zhao, Xuanping Zhang

Erschienen in: Bioinformatics and Biomedical Engineering

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In cancer genomics, the mutually exclusive patterns of somatic mutations are important biomarkers that are suggested to be valuable in cancer diagnosis and treatment. However, detecting these patterns of mutation data is an NP-hard problem, which pose a great challenge for computational approaches. Existing approaches either limit themselves to pair-wise mutually exclusive patterns or largely rely on prior knowledge and complicated computational processes. Furthermore, the existing algorithms are often designed for genotype datasets, which may lose the information about tumor clonality, which is emphasized in tumor progression. In this paper, an algorithm for multiple sets with mutually exclusive patterns based on a fuzzy strategy to deal with real-type datasets is proposed. Different from the existing approaches, the algorithm focuses on both similarity within subsets and mutual exclusion among subsets, taking the mutual exclusion degree as the optimization objective rather than a constraint condition. Fuzzy clustering of the is done mutations by method of membership degree, and a fuzzy strategy is used to iterate the clustering centers and membership degrees. Finally, the target subsets are obtained, which have the characteristics of high similarity within subsets and the largest number of mutations, and high mutual exclusion among subsets and the largest number of subsets. This paper conducted a series of experiments to verify the performance of the algorithm, including simulation datasets and truthful datasets from TCGA. According to the results, the algorithm shows good performance under different simulation configurations, and some of the mutually exclusive patterns detected from TCGA datasets were supported by published literatures. This paper compared the performance to MEGSA, which is the best and most widely used method at present. The purities and computational efficiencies on simulation datasets outperformed MEGSA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, S., Liu, J., et al.: MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of caner mutations. Bioinformatics 37(9), 1189–1197 (2021)CrossRefPubMed Liu, S., Liu, J., et al.: MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of caner mutations. Bioinformatics 37(9), 1189–1197 (2021)CrossRefPubMed
2.
Zurück zum Zitat Yeang, C., Frank, M., Arnold, L.: Combinatorial patterns of somatic gene mutations in cancer. FASEB J. 22(8), 2605–2622 (2008)CrossRefPubMed Yeang, C., Frank, M., Arnold, L.: Combinatorial patterns of somatic gene mutations in cancer. FASEB J. 22(8), 2605–2622 (2008)CrossRefPubMed
3.
Zurück zum Zitat Fabio, V., Eli, U., Benjamin, J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)CrossRef Fabio, V., Eli, U., Benjamin, J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012)CrossRef
4.
Zurück zum Zitat Cui, Y., Wang, T.: A statistic model of identifying mutual exclusivity mutations in cancer pathway. Taiyuan Shanxi Medical University (2016) Cui, Y., Wang, T.: A statistic model of identifying mutual exclusivity mutations in cancer pathway. Taiyuan Shanxi Medical University (2016)
5.
Zurück zum Zitat Wu, H.: Algorithm for detecting driver pathways in cancer based on mutated gene networks. Chin. J. Comput. 41(6), 1180–1194 (2018) Wu, H.: Algorithm for detecting driver pathways in cancer based on mutated gene networks. Chin. J. Comput. 41(6), 1180–1194 (2018)
6.
Zurück zum Zitat Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma gene and core pathways. Nature 455(7216), 1061–1068 (2008)CrossRef Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma gene and core pathways. Nature 455(7216), 1061–1068 (2008)CrossRef
7.
Zurück zum Zitat Hiromasa, H., Hisayuki, S., et al.: PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 68(17), 6913–6921 (2008)CrossRef Hiromasa, H., Hisayuki, S., et al.: PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 68(17), 6913–6921 (2008)CrossRef
8.
Zurück zum Zitat Yang, C., Zheng, T., et al.: A greedy algorithm for detecting mutually exclusive patterns in cancer mutation data. In: International Work-Conference on Bioinformatics and Biomedical Engineering (2019) Yang, C., Zheng, T., et al.: A greedy algorithm for detecting mutually exclusive patterns in cancer mutation data. In: International Work-Conference on Bioinformatics and Biomedical Engineering (2019)
9.
Zurück zum Zitat Xing, H., Paula, L., Jing, H., et al.: MEGSA: a powerful and flexible framework for analyzing mutual exclusivity of tumor mutations. Am. J. Hum. Genet. 98(3), 442–455 (2016)CrossRef Xing, H., Paula, L., Jing, H., et al.: MEGSA: a powerful and flexible framework for analyzing mutual exclusivity of tumor mutations. Am. J. Hum. Genet. 98(3), 442–455 (2016)CrossRef
10.
Zurück zum Zitat Huang, W., Tung, S., Chen, Y., et al.: IFI44L is a novel tumor suppressor in human hepatocellular carcinoma affecting cancer stemness, metastasis, and drug resistance via regulating met/Src signaling pathway. BMC Cancer 18(1), 609 (2018)CrossRefPubMedPubMedCentral Huang, W., Tung, S., Chen, Y., et al.: IFI44L is a novel tumor suppressor in human hepatocellular carcinoma affecting cancer stemness, metastasis, and drug resistance via regulating met/Src signaling pathway. BMC Cancer 18(1), 609 (2018)CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Michael, C., John, W., Ling, L., et al.: PathScan: a tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics 27(12), 1595–1602 (2011)CrossRef Michael, C., John, W., Ling, L., et al.: PathScan: a tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics 27(12), 1595–1602 (2011)CrossRef
12.
Zurück zum Zitat Yoo-Ah, K., Cho, D., Phuong, D., et al.: MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics 31(12), i284–i292 (2015)CrossRef Yoo-Ah, K., Cho, D., Phuong, D., et al.: MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics 31(12), i284–i292 (2015)CrossRef
13.
Zurück zum Zitat Christopher, A., Stephen, H., Erik, P., et al.: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Med. Genomics 4, 34 (2011)CrossRef Christopher, A., Stephen, H., Erik, P., et al.: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Med. Genomics 4, 34 (2011)CrossRef
14.
Zurück zum Zitat Giovanni, C., Ethan, C., Chris, S., et al.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398–406 (2012)CrossRef Giovanni, C., Ethan, C., Chris, S., et al.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398–406 (2012)CrossRef
15.
Zurück zum Zitat Ewa, S., Niko, B.: Modeling mutual exclusivity of cancer mutations. PLoS Comput. Biol. 10(3), e1003503 (2014)CrossRef Ewa, S., Niko, B.: Modeling mutual exclusivity of cancer mutations. PLoS Comput. Biol. 10(3), e1003503 (2014)CrossRef
16.
Zurück zum Zitat Richard, R.: Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)CrossRef Richard, R.: Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)CrossRef
Metadaten
Titel
An Accurate Algorithm for Identifying Mutually Exclusive Patterns on Multiple Sets of Genomic Mutations
verfasst von
Siyu He
Jiayin Wang
Zhongmeng Zhao
Xuanping Zhang
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-34960-7_11

Premium Partner