Skip to main content
Erschienen in: International Journal of Steel Structures 5/2018

30.04.2018

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

verfasst von: Asmita Rokaya, Jeongho Kim

Erschienen in: International Journal of Steel Structures | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress–strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al Quran, F. M. (2016). Effect of annealing on low carbon steel grade 1008. International Journal of Metallurgical & Materials, 6(2), 1–6. Al Quran, F. M. (2016). Effect of annealing on low carbon steel grade 1008. International Journal of Metallurgical & Materials, 6(2), 1–6.
Zurück zum Zitat Apetre, N. A., Sankar, B. V., & Ambur, D. R. (2006). Low-velocity impact response of sandwich beams with functionally graded core. International Journal of Solids and Structures, 43(9), 2479–2496.CrossRef Apetre, N. A., Sankar, B. V., & Ambur, D. R. (2006). Low-velocity impact response of sandwich beams with functionally graded core. International Journal of Solids and Structures, 43(9), 2479–2496.CrossRef
Zurück zum Zitat Bringas, J. E. (2004). Handbooks of comparative world steel standards. West Conshohocken: ASTM International. Bringas, J. E. (2004). Handbooks of comparative world steel standards. West Conshohocken: ASTM International.
Zurück zum Zitat Dharmasena, K. P., Wadley, H. N., Xue, Z., & Hutchinson, J. W. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. International Journal of Impact Engineering, 35(9), 1063–1074.CrossRef Dharmasena, K. P., Wadley, H. N., Xue, Z., & Hutchinson, J. W. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. International Journal of Impact Engineering, 35(9), 1063–1074.CrossRef
Zurück zum Zitat Fleck, N. A., & Deshpande, V. S. (2004). The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, 71(3), 386–401.CrossRef Fleck, N. A., & Deshpande, V. S. (2004). The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, 71(3), 386–401.CrossRef
Zurück zum Zitat Gardner, N., & Shukla, A. (2011). The blast response of sandwich composites with a graded core: Equivalent core layer mass vs. equivalent core layer thickness. In T. Proulx (Ed.), Dynamic behavior of materials (Vol. 1, pp. 281–288). New York, NY: Springer.CrossRef Gardner, N., & Shukla, A. (2011). The blast response of sandwich composites with a graded core: Equivalent core layer mass vs. equivalent core layer thickness. In T. Proulx (Ed.), Dynamic behavior of materials (Vol. 1, pp. 281–288). New York, NY: Springer.CrossRef
Zurück zum Zitat Gardner, N., Wang, E., Kumar, P., & Shukla, A. (2012). Blast mitigation in a sandwich composite using graded core and polyurea interlayer. Experimental Mechanics, 52(2), 119–133.CrossRef Gardner, N., Wang, E., Kumar, P., & Shukla, A. (2012). Blast mitigation in a sandwich composite using graded core and polyurea interlayer. Experimental Mechanics, 52(2), 119–133.CrossRef
Zurück zum Zitat Hanssen, A. G., Enstock, L., & Langseth, M. (2002). Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 27(6), 593–618.CrossRef Hanssen, A. G., Enstock, L., & Langseth, M. (2002). Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 27(6), 593–618.CrossRef
Zurück zum Zitat Hossain, M. K., Liu, Q. L., & O’Toole, B. J. (2007). Functionally graded foam material system for energy absorption. In SAMPE 39th ISTC, Cincinnati, OH. Hossain, M. K., Liu, Q. L., & O’Toole, B. J. (2007). Functionally graded foam material system for energy absorption. In SAMPE 39th ISTC, Cincinnati, OH.
Zurück zum Zitat Kumar, P., LeBlanc, J., Stargel, D. S., & Shukla, A. (2012). Effect of plate curvature on blast response of aluminum panels. International Journal of Impact Engineering, 46, 74–85.CrossRef Kumar, P., LeBlanc, J., Stargel, D. S., & Shukla, A. (2012). Effect of plate curvature on blast response of aluminum panels. International Journal of Impact Engineering, 46, 74–85.CrossRef
Zurück zum Zitat LeBlanc, J., & Shukla, A. (2010). Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: An experimental and computational study. Composite Structures, 92(10), 2421–2430.CrossRef LeBlanc, J., & Shukla, A. (2010). Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: An experimental and computational study. Composite Structures, 92(10), 2421–2430.CrossRef
Zurück zum Zitat LeBlanc, J., & Shukla, A. (2011). Dynamic response of curved composite panels to underwater explosive loading: Experimental and computational comparisons. Composite Structures, 93(11), 3072–3081.CrossRef LeBlanc, J., & Shukla, A. (2011). Dynamic response of curved composite panels to underwater explosive loading: Experimental and computational comparisons. Composite Structures, 93(11), 3072–3081.CrossRef
Zurück zum Zitat LeBlanc, J., Shukla, A., Rousseau, C., & Bogdanovich, A. (2007). Shock loading of three-dimensional woven composite materials. Composite Structures, 79(3), 344–355.CrossRef LeBlanc, J., Shukla, A., Rousseau, C., & Bogdanovich, A. (2007). Shock loading of three-dimensional woven composite materials. Composite Structures, 79(3), 344–355.CrossRef
Zurück zum Zitat Li, S., Li, X., Wang, Z., Wu, G., Lu, G., & Zhao, L. (2016). Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading. Composites Part A Applied Science and Manufacturing, 80, 1–2.CrossRef Li, S., Li, X., Wang, Z., Wu, G., Lu, G., & Zhao, L. (2016). Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading. Composites Part A Applied Science and Manufacturing, 80, 1–2.CrossRef
Zurück zum Zitat Li, S., Wang, Z., Wu, G., Zhao, L., & Li, X. (2014). Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading. Composites Part A Applied Science and Manufacturing, 56, 262–271.CrossRef Li, S., Wang, Z., Wu, G., Zhao, L., & Li, X. (2014). Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading. Composites Part A Applied Science and Manufacturing, 56, 262–271.CrossRef
Zurück zum Zitat Liang, C. C., Yang, M. F., & Wu, P. W. (2001). Optimum design of metallic corrugated core sandwich panels subjected to blast loads. Ocean Engineering, 28(7), 825–861.CrossRef Liang, C. C., Yang, M. F., & Wu, P. W. (2001). Optimum design of metallic corrugated core sandwich panels subjected to blast loads. Ocean Engineering, 28(7), 825–861.CrossRef
Zurück zum Zitat Nurick, G. N., Langdon, G. S., Chi, Y., & Jacob, N. (2009). Behavior of sandwich panels subjected to intense air blast—Part 1: Experiments. Composite Structures, 91(4), 433–441.CrossRef Nurick, G. N., Langdon, G. S., Chi, Y., & Jacob, N. (2009). Behavior of sandwich panels subjected to intense air blast—Part 1: Experiments. Composite Structures, 91(4), 433–441.CrossRef
Zurück zum Zitat Rathbun, H. J., Radford, D. D., Xue, Z., He, M. Y., Yang, J., Deshpande, V., et al. (2006). Performance of metallic honeycomb-core sandwich beams under shock loading. International Journal of Solids and Structures, 43(6), 1746–1763.CrossRef Rathbun, H. J., Radford, D. D., Xue, Z., He, M. Y., Yang, J., Deshpande, V., et al. (2006). Performance of metallic honeycomb-core sandwich beams under shock loading. International Journal of Solids and Structures, 43(6), 1746–1763.CrossRef
Zurück zum Zitat Russell, D. M. (1997). Error measures for comparing transient data: Part I: Development of a comprehensive error measure. In Proceedings of the 68th shock and vibration symposium, Hunt Valley, MD, pp. 175–184. Russell, D. M. (1997). Error measures for comparing transient data: Part I: Development of a comprehensive error measure. In Proceedings of the 68th shock and vibration symposium, Hunt Valley, MD, pp. 175–184.
Zurück zum Zitat Tekalur, S. A., Shukla, A., & Shivakumar, K. (2008). Blast resistance of polyurea based layered composite materials. Composite Structures, 84(3), 271–281.CrossRef Tekalur, S. A., Shukla, A., & Shivakumar, K. (2008). Blast resistance of polyurea based layered composite materials. Composite Structures, 84(3), 271–281.CrossRef
Zurück zum Zitat Tilbrook, M. T., Deshpande, V. S., & Fleck, N. A. (2006). The impulsive response of sandwich beams: Analytical and numerical investigation of regimes of behavior. Journal of the Mechanics and Physics of Solids, 54(11), 2242–2280.CrossRef Tilbrook, M. T., Deshpande, V. S., & Fleck, N. A. (2006). The impulsive response of sandwich beams: Analytical and numerical investigation of regimes of behavior. Journal of the Mechanics and Physics of Solids, 54(11), 2242–2280.CrossRef
Zurück zum Zitat Vaidya, S., Zhang, L., Maddala, D., Hebert, R., Wright, J. T., Shukla, A., et al. (2015). Quasi-static response of sandwich steel beams with corrugated cores. Engineering Structures, 97, 80–89.CrossRef Vaidya, S., Zhang, L., Maddala, D., Hebert, R., Wright, J. T., Shukla, A., et al. (2015). Quasi-static response of sandwich steel beams with corrugated cores. Engineering Structures, 97, 80–89.CrossRef
Zurück zum Zitat Wang, E., Gardner, N., Gupta, S., & Shukla, A. (2012). Fluid-structure interaction and its effect on the performance of composite structures under air-blast loading. International Journal of Multiphysics, 6(3), 219–239.CrossRef Wang, E., Gardner, N., Gupta, S., & Shukla, A. (2012). Fluid-structure interaction and its effect on the performance of composite structures under air-blast loading. International Journal of Multiphysics, 6(3), 219–239.CrossRef
Zurück zum Zitat Wang, E., Gardner, N., & Shukla, A. (2009). The blast resistance of sandwich composites with stepwise graded cores. International Journal of Solids and Structures, 46(18), 3492–3502.CrossRef Wang, E., Gardner, N., & Shukla, A. (2009). The blast resistance of sandwich composites with stepwise graded cores. International Journal of Solids and Structures, 46(18), 3492–3502.CrossRef
Zurück zum Zitat Wang, E., & Shukla, A. (2010). Analytical and experimental evaluation of energies during shock wave loading. International Journal of Impact Engineering, 37(12), 1188–1196.CrossRef Wang, E., & Shukla, A. (2010). Analytical and experimental evaluation of energies during shock wave loading. International Journal of Impact Engineering, 37(12), 1188–1196.CrossRef
Zurück zum Zitat Wright, J. T. (2012). Thermo-dynamic response of ASME A913 grade 65 steel and graded, corrugated sandwich panels under shock loading. University of Rhode Island. Wright, J. T. (2012). Thermo-dynamic response of ASME A913 grade 65 steel and graded, corrugated sandwich panels under shock loading. University of Rhode Island.
Zurück zum Zitat Xue, Z., & Hutchinson, J. W. (2003). Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 45(4), 687–705.CrossRef Xue, Z., & Hutchinson, J. W. (2003). Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 45(4), 687–705.CrossRef
Zurück zum Zitat Yazici, M., Wright, J., Bertin, D., & Shukla, A. (2014). Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Composite Structures, 110, 98–109.CrossRef Yazici, M., Wright, J., Bertin, D., & Shukla, A. (2014). Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Composite Structures, 110, 98–109.CrossRef
Zurück zum Zitat Yazici, M., Wright, J., Bertin, D., & Shukla, A. (2015). Preferentially filled foam core corrugated steel sandwich structures for improved blast performance. Journal of Applied Mechanics, 82(6), 061005.CrossRef Yazici, M., Wright, J., Bertin, D., & Shukla, A. (2015). Preferentially filled foam core corrugated steel sandwich structures for improved blast performance. Journal of Applied Mechanics, 82(6), 061005.CrossRef
Zurück zum Zitat Zhang, L., Hebert, R., Wright, J. T., Shukla, A., & Kim, J. H. (2014). Dynamic response of corrugated sandwich steel plates with graded cores. International Journal of Impact Engineering, 65, 185–194.CrossRef Zhang, L., Hebert, R., Wright, J. T., Shukla, A., & Kim, J. H. (2014). Dynamic response of corrugated sandwich steel plates with graded cores. International Journal of Impact Engineering, 65, 185–194.CrossRef
Metadaten
Titel
An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse
verfasst von
Asmita Rokaya
Jeongho Kim
Publikationsdatum
30.04.2018
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 5/2018
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-018-0062-6

Weitere Artikel der Ausgabe 5/2018

International Journal of Steel Structures 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.