Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 12/2022

01.12.2022 | Research Paper

An adaptive and scalable artificial neural network-based model-order-reduction method for large-scale topology optimization designs

verfasst von: Ren Kai Tan, Chao Qian, Kangjie Li, Dan Xu, Wenjing Ye

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Topology optimization (TO) provides a systematic approach for obtaining structure design with optimum performance of interest. However, the process requires the numerical evaluation of the objective function and constraints at each iteration, which is computationally expensive, especially for large-scale designs. Deep learning-based models have been developed to accelerate the process either by acting as surrogate models replacing the simulation process, or completely replacing the optimization process. However, most of them require a large set of labelled training data, which is generated mostly through simulations. The data generation time scales rapidly with the design size, decreasing the efficiency of the method itself. Another major issue is the weak generalizability of deep learning models. Most models are trained to work with the design problem similar to that used for data generation and require retraining if the design problem changes. In this work an adaptive, scalable deep learning-based model-order-reduction method is proposed to accelerate large-scale TO process, by utilizing MapNet, a neural network which maps the field of interest from coarse-scale to fine-scale. The proposed method allows for each simulation of the TO process to be performed at a coarser mesh, thereby greatly reducing the total computational time. More importantly, a crucial element, domain fragmentation, is introduced and integrated into the method, which greatly improves the transferability and scalability of the method. It has been demonstrated that the MapNet trained using data from one cantilever beam design with a specific loading condition can be directly applied to other structure design problems with different domain shapes, sizes, boundary and loading conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86CrossRef Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86CrossRef
Zurück zum Zitat Ates GC, Gorguluarslan RM (2021) Two-stage convolutional encoder-decoder network to improve the performance and reliability of deep learning models for topology optimization. Struct Multidisc Optim 63(4):1927–1950MathSciNetCrossRef Ates GC, Gorguluarslan RM (2021) Two-stage convolutional encoder-decoder network to improve the performance and reliability of deep learning models for topology optimization. Struct Multidisc Optim 63(4):1927–1950MathSciNetCrossRef
Zurück zum Zitat Baandrup M, Sigmund O, Polk H, Aage N (2020) Closing the gap towards super-long suspension bridges using computational morphogenesis. Nat Commun 11(1):1–7CrossRef Baandrup M, Sigmund O, Polk H, Aage N (2020) Closing the gap towards super-long suspension bridges using computational morphogenesis. Nat Commun 11(1):1–7CrossRef
Zurück zum Zitat Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, BerlinMATH
Zurück zum Zitat Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531MathSciNetCrossRefMATH Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531MathSciNetCrossRefMATH
Zurück zum Zitat Boyaval S (2008) Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model Simul 7(1):466–494MathSciNetCrossRefMATH Boyaval S (2008) Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model Simul 7(1):466–494MathSciNetCrossRefMATH
Zurück zum Zitat Chi H, Zhang Y, Tang TLE, Mirabella L, Dalloro L, Song L, Paulino GH (2021) Universal machine learning for topology optimization. Comput Methods Appl Mech Eng 375:112739MathSciNetCrossRefMATH Chi H, Zhang Y, Tang TLE, Mirabella L, Dalloro L, Song L, Paulino GH (2021) Universal machine learning for topology optimization. Comput Methods Appl Mech Eng 375:112739MathSciNetCrossRefMATH
Zurück zum Zitat Cremonesi M, Néron D, Guidault P, Ladevèze P (2013) A PGD-based homogenization technique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng 267:275–292MathSciNetCrossRefMATH Cremonesi M, Néron D, Guidault P, Ladevèze P (2013) A PGD-based homogenization technique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng 267:275–292MathSciNetCrossRefMATH
Zurück zum Zitat Hernández JA, Oliver J, Huespe AE, Caicedo MA, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189MathSciNetCrossRefMATH Hernández JA, Oliver J, Huespe AE, Caicedo MA, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189MathSciNetCrossRefMATH
Zurück zum Zitat Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049CrossRef Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049CrossRef
Zurück zum Zitat Kalina KA, Linden L, Brummund J, Metsch P, Kästner M (2022) Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks. Comput Mech 69:213–232MathSciNetCrossRefMATH Kalina KA, Linden L, Brummund J, Metsch P, Kästner M (2022) Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks. Comput Mech 69:213–232MathSciNetCrossRefMATH
Zurück zum Zitat Kollmann HT, Abueidda DW, Koric S, Guleryuz E, Sobh NA (2020) Deep learning for topology optimization of 2D metamaterials. Mater Des 196:109098CrossRef Kollmann HT, Abueidda DW, Koric S, Guleryuz E, Sobh NA (2020) Deep learning for topology optimization of 2D metamaterials. Mater Des 196:109098CrossRef
Zurück zum Zitat Lee S, Kim H, Lieu QX, Lee J (2020) CNN-based image recognition for topology optimization. Knowl Based Syst 198:105887CrossRef Lee S, Kim H, Lieu QX, Lee J (2020) CNN-based image recognition for topology optimization. Knowl Based Syst 198:105887CrossRef
Zurück zum Zitat Lu L, Meng X, Mao Z, George EK (2020) DeepXDE: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228MathSciNetCrossRefMATH Lu L, Meng X, Mao Z, George EK (2020) DeepXDE: a deep learning library for solving differential equations. SIAM Rev 63(1):208–228MathSciNetCrossRefMATH
Zurück zum Zitat Monteiro E, Yvonnet J, He Q (2008) Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput Mater Sci 42(4):704–712CrossRef Monteiro E, Yvonnet J, He Q (2008) Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput Mater Sci 42(4):704–712CrossRef
Zurück zum Zitat Nguyen NC (2008) A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J Comput Phys 227(23):9807–9822MathSciNetCrossRefMATH Nguyen NC (2008) A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J Comput Phys 227(23):9807–9822MathSciNetCrossRefMATH
Zurück zum Zitat Nie Z, Jiang H, Kara LB (2020) Stress field prediction in cantilevered structures using convolutional neural networks. J Comput Inf Sci Eng 20(1):011002CrossRef Nie Z, Jiang H, Kara LB (2020) Stress field prediction in cantilevered structures using convolutional neural networks. J Comput Inf Sci Eng 20(1):011002CrossRef
Zurück zum Zitat Qian C, Ye W (2021) Accelerating gradient-based topology optimization design with dual-model artificial neural networks. Struct Multidisc Optim 63(4):1687–1707MathSciNetCrossRef Qian C, Ye W (2021) Accelerating gradient-based topology optimization design with dual-model artificial neural networks. Struct Multidisc Optim 63(4):1687–1707MathSciNetCrossRef
Zurück zum Zitat Raissi M, Karniadakis GE (2018) Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141MathSciNetCrossRefMATH Raissi M, Karniadakis GE (2018) Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141MathSciNetCrossRefMATH
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetCrossRefMATH
Zurück zum Zitat Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481):1026–1030MathSciNetCrossRefMATH Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481):1026–1030MathSciNetCrossRefMATH
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. pp 234–241
Zurück zum Zitat Tan RK, Zhang NL, Ye W (2020) A deep learning-based method for the design of microstructural materials. Struct Multidisc Optim 61(4):1417–1438MathSciNetCrossRef Tan RK, Zhang NL, Ye W (2020) A deep learning-based method for the design of microstructural materials. Struct Multidisc Optim 61(4):1417–1438MathSciNetCrossRef
Zurück zum Zitat Tan RK, Qian C, Wang M, Ye W (2022) An efficient data generation method for ANN-based surrogate models. Struct Multidisc Optim 65(3):1–22MathSciNetCrossRef Tan RK, Qian C, Wang M, Ye W (2022) An efficient data generation method for ANN-based surrogate models. Struct Multidisc Optim 65(3):1–22MathSciNetCrossRef
Zurück zum Zitat White DA, Arrighi W, Kudo JJ, Watts SE (2019) Multiscale topology optimization using neural network surrogate models. Comput Methods Appl Mech Eng 346:1118–1135MathSciNetCrossRefMATH White DA, Arrighi W, Kudo JJ, Watts SE (2019) Multiscale topology optimization using neural network surrogate models. Comput Methods Appl Mech Eng 346:1118–1135MathSciNetCrossRefMATH
Zurück zum Zitat Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidisc Optim 59(3):787–799CrossRef Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidisc Optim 59(3):787–799CrossRef
Zurück zum Zitat Yvonnet J, He Q (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368MathSciNetCrossRefMATH Yvonnet J, He Q (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368MathSciNetCrossRefMATH
Metadaten
Titel
An adaptive and scalable artificial neural network-based model-order-reduction method for large-scale topology optimization designs
verfasst von
Ren Kai Tan
Chao Qian
Kangjie Li
Dan Xu
Wenjing Ye
Publikationsdatum
01.12.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 12/2022
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-022-03456-x

Weitere Artikel der Ausgabe 12/2022

Structural and Multidisciplinary Optimization 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.