Skip to main content
Erschienen in: Wireless Networks 8/2018

08.04.2017

An adaptive target tracking method for 3D underwater wireless sensor networks

verfasst von: Mehrnaz Poostpasand, Reza Javidan

Erschienen in: Wireless Networks | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Today, underwater target tracking using underwater wireless sensor networks (UWSNs) is an essential part in many military and non-military applications. Most of moving target tracking studies in UWSNs are considered in two-dimensional space. However, most practical applications require to be implemented in three-dimensional space. In this paper an adaptive method based on Kalman filter for moving target tracking in three dimensional space using UWSNs is proposed. Since, energy protection is a vital task in UWSNs; the proposed method reduces the energy consumption of the entire network by a sleep/wake plan. In this plan only 60% of the closer nodes along the path of the moving target will be waked up using a sink activation message and participate in the tracking, while the other nodes remain in sleep state. At each stage of tracking, the location of the target is estimated using a 3D underwater target tracking algorithm with the trilateration method. Subsequently, the estimations and target tracking results are inserted into the Kalman filter as measuring model to produce the final result. Performance evaluation and simulations results indicated that the proposed method improves the average location error by 45%, average estimated velocity by 86%, and average energy consumption by 33% in comparison to the trilateration method. However, computation time is increased as a result of improving tracking accuracy; and tracking accuracy is lost about 20% due to saving energy. It was shown that the proposed method has been able to adaptively achieve a trade-off between tracking accuracy and energy consumption based on real-time user requirements. Such adaption can be controlled trough the sink node based on real-time requirements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arsanjani, T. J., Javidan, R., Nazemosadat, M. J., Arsanjani, J. J., & Vaz, E. (2015). Spatiotemporal monitoring of Bakhtegan Lake’s areal fluctuations and an exploration of its future status by applying a cellular automata model. Computers & Geosciences, 78, 37–43.CrossRef Arsanjani, T. J., Javidan, R., Nazemosadat, M. J., Arsanjani, J. J., & Vaz, E. (2015). Spatiotemporal monitoring of Bakhtegan Lake’s areal fluctuations and an exploration of its future status by applying a cellular automata model. Computers & Geosciences, 78, 37–43.CrossRef
2.
Zurück zum Zitat Kavoosi, V., Dehghani, M. J., & Javidan, R. (2016). Selective geometry for near-field three-dimensional localization using one-pair sensor. IET Radar, Sonar and Navigation, 10(5), 844–849.CrossRef Kavoosi, V., Dehghani, M. J., & Javidan, R. (2016). Selective geometry for near-field three-dimensional localization using one-pair sensor. IET Radar, Sonar and Navigation, 10(5), 844–849.CrossRef
3.
Zurück zum Zitat Javidan, R., Masnadi-Shirazi, M. A., & Azimifar, Z. (2008). Contourlet-based acoustic seabed ground discrimination system. In 3rd IEEE International conference on information and communication technologies: from theory to applications. Javidan, R., Masnadi-Shirazi, M. A., & Azimifar, Z. (2008). Contourlet-based acoustic seabed ground discrimination system. In 3rd IEEE International conference on information and communication technologies: from theory to applications.
4.
Zurück zum Zitat Javidan, R., & Jones, I. S. F. (2004). High resolution acoustic imaging of archaeological artifacts in fluid mud. In International congress on the application of recent advances in underwater detection and survey techniques to underwater archeology, Turkey. Javidan, R., & Jones, I. S. F. (2004). High resolution acoustic imaging of archaeological artifacts in fluid mud. In International congress on the application of recent advances in underwater detection and survey techniques to underwater archeology, Turkey.
5.
Zurück zum Zitat Mohammadi, R., Javidan, R., & Jalili, A. (2015). Fuzzy depth based routing protocol for underwater acoustic wireless sensor. Journal of Telecommunication, Electronic and Computer Engineering, 7(1), 81–86. Mohammadi, R., Javidan, R., & Jalili, A. (2015). Fuzzy depth based routing protocol for underwater acoustic wireless sensor. Journal of Telecommunication, Electronic and Computer Engineering, 7(1), 81–86.
6.
Zurück zum Zitat Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., et al. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—A case study. IEEE Sensor Journal, 16(23), 8649–8664. Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., et al. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—A case study. IEEE Sensor Journal, 16(23), 8649–8664.
7.
Zurück zum Zitat Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Chizari, H. (2017). A reliable energy-efficient pressure-based routing protocol for underwater wireless sensor network. Wireless Networks. doi:10.1007/s11276-017-1461-x.CrossRef Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Chizari, H. (2017). A reliable energy-efficient pressure-based routing protocol for underwater wireless sensor network. Wireless Networks. doi:10.​1007/​s11276-017-1461-x.CrossRef
8.
Zurück zum Zitat Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Kaiwartya, O. (2017). Next forwarding node selection in underwater wireless sensor networks (UWSNs): Techniques and challenges. MDPI- Information, 8(1), 1–30.CrossRef Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Kaiwartya, O. (2017). Next forwarding node selection in underwater wireless sensor networks (UWSNs): Techniques and challenges. MDPI- Information, 8(1), 1–30.CrossRef
9.
Zurück zum Zitat Asif, M., Rizal, M., & Yahya, A. (2006). An active contour for underwater target tracking and navigation. In Proceedings of International Conference on Man-Machine Systems, Langkawi Islands, Malaysia, pp. 1–6. Asif, M., Rizal, M., & Yahya, A. (2006). An active contour for underwater target tracking and navigation. In Proceedings of International Conference on Man-Machine Systems, Langkawi Islands, Malaysia, pp. 1–6.
10.
Zurück zum Zitat Dalberg, E., Lauberts, A., Lennartsson, R. K., Levonen, M. J., & Persson, L. (2006). Underwater target tracking by means of acoustic and electromagnetic data fusion. In Proceedings of 9th International Conference on Information Fusion, Florence, Italy, pp. 1–7. Dalberg, E., Lauberts, A., Lennartsson, R. K., Levonen, M. J., & Persson, L. (2006). Underwater target tracking by means of acoustic and electromagnetic data fusion. In Proceedings of 9th International Conference on Information Fusion, Florence, Italy, pp. 1–7.
11.
Zurück zum Zitat Pettersson, M. I., Zetterberg, V., & Claesson, I. (2005). Detection and imaging of moving targets in wideband SAS using fast time backprojection combined with space–time processing. In Proceedings of MTS/IEEE Oceans, Vol. 3, pp. 2388–2393. Pettersson, M. I., Zetterberg, V., & Claesson, I. (2005). Detection and imaging of moving targets in wideband SAS using fast time backprojection combined with space–time processing. In Proceedings of MTS/IEEE Oceans, Vol. 3, pp. 2388–2393.
12.
Zurück zum Zitat Eickstedt, D., Benjamin, M., Schmidt, H., & Leonard, J. (2006). “Adaptive tracking of underwater targets with autonomous sensor networks. Journal of Underwater Acoustics, 56, 465–495. Eickstedt, D., Benjamin, M., Schmidt, H., & Leonard, J. (2006). “Adaptive tracking of underwater targets with autonomous sensor networks. Journal of Underwater Acoustics, 56, 465–495.
13.
Zurück zum Zitat Wang, G., Alam Bhuiyan, Z., Cao, J., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.CrossRef Wang, G., Alam Bhuiyan, Z., Cao, J., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.CrossRef
14.
Zurück zum Zitat Zheng, J., Bhuiyan, M., Liang, S., Xing, X., & Wang, G. (2014). Auction-based adaptive sensor activation algorithm for target tracking in wireless sensor networks. Ubiquitous Computing and Future Communication Systems, 39, 88–99. Zheng, J., Bhuiyan, M., Liang, S., Xing, X., & Wang, G. (2014). Auction-based adaptive sensor activation algorithm for target tracking in wireless sensor networks. Ubiquitous Computing and Future Communication Systems, 39, 88–99.
15.
Zurück zum Zitat Pino-Povedano, S., Arroyo-Valles, R., & Cid-Sueiro, J. (2014). Selective forwarding for energy-efficient target tracking in sensor networks. Signal Processing, 94, 557–569.CrossRef Pino-Povedano, S., Arroyo-Valles, R., & Cid-Sueiro, J. (2014). Selective forwarding for energy-efficient target tracking in sensor networks. Signal Processing, 94, 557–569.CrossRef
16.
Zurück zum Zitat An, Y., Yoo, S., An, C., & Wells, B. (2013). Doppler effect on target tracking in wireless sensor networks. Computer Communications, 36, 834–848.CrossRef An, Y., Yoo, S., An, C., & Wells, B. (2013). Doppler effect on target tracking in wireless sensor networks. Computer Communications, 36, 834–848.CrossRef
17.
Zurück zum Zitat Yu, C., Lee, K., Choi, J., & Seo, Y. (2008). Distributed single target tracking in underwater wireless sensor networks. In Proceedings of SICE Annual Conference, Tokyo, Japan, pp. 1351–1356. Yu, C., Lee, K., Choi, J., & Seo, Y. (2008). Distributed single target tracking in underwater wireless sensor networks. In Proceedings of SICE Annual Conference, Tokyo, Japan, pp. 1351–1356.
18.
Zurück zum Zitat Uludag, S., Karakus, M., & Guler, E. (2014). Low-complexity 3D target tracking in wireless aerial sensor networks. In Proceedings of IEEE International Conference Communications, Sydney, pp. 373–378. Uludag, S., Karakus, M., & Guler, E. (2014). Low-complexity 3D target tracking in wireless aerial sensor networks. In Proceedings of IEEE International Conference Communications, Sydney, pp. 373–378.
19.
Zurück zum Zitat Isbitiren, G., & Akan, O. B. (2011). Three-dimensional underwater target tracking with acoustic sensor networks. IEEE Transactions on Vehicular Technology, 60(8), 3897–3906.CrossRef Isbitiren, G., & Akan, O. B. (2011). Three-dimensional underwater target tracking with acoustic sensor networks. IEEE Transactions on Vehicular Technology, 60(8), 3897–3906.CrossRef
20.
Zurück zum Zitat Hare, J., Gupta, S., & Song, J. (2014). Distributed smart sensor scheduling for underwater target tracking. In Proceedings of Oceans Conference, St. John’s, NL. Hare, J., Gupta, S., & Song, J. (2014). Distributed smart sensor scheduling for underwater target tracking. In Proceedings of Oceans Conference, St. John’s, NL.
21.
Zurück zum Zitat Zhang, Q., Liu, M., & Zhang, S. (2015). Node topology effect on target tracking based on UWSNs using quantized measurements. IEEE Transactions on Cybernetics, 45(10), 2323–2335.CrossRef Zhang, Q., Liu, M., & Zhang, S. (2015). Node topology effect on target tracking based on UWSNs using quantized measurements. IEEE Transactions on Cybernetics, 45(10), 2323–2335.CrossRef
22.
Zurück zum Zitat Ramezani, H., & Jamali, H. (2013). Target localization and tracking for an isogradient sound speed profile. IEEE Transactions on Signal Processing, 61(6), 1434–1446.MathSciNetCrossRef Ramezani, H., & Jamali, H. (2013). Target localization and tracking for an isogradient sound speed profile. IEEE Transactions on Signal Processing, 61(6), 1434–1446.MathSciNetCrossRef
23.
Zurück zum Zitat Li, W., Li, Y., Ren, S., & Feng, X. (2013). Tracking an underwater maneuvering target using an adaptive Kalman filter. In Proceedings of IEEE Conference TENCON, Xi’an. Li, W., Li, Y., Ren, S., & Feng, X. (2013). Tracking an underwater maneuvering target using an adaptive Kalman filter. In Proceedings of IEEE Conference TENCON, Xi’an.
25.
Zurück zum Zitat Li, S., & Wang, X. (2016). Optimal joint detection and estimation based on decision-dependent Bayesian cost. IEEE Transactions on Signal Processing, 64(10), 2573–2586.MathSciNetCrossRef Li, S., & Wang, X. (2016). Optimal joint detection and estimation based on decision-dependent Bayesian cost. IEEE Transactions on Signal Processing, 64(10), 2573–2586.MathSciNetCrossRef
26.
Zurück zum Zitat Liu, X.-Y., Zhu, Y., Kong, L., Cong Liu, Y., Vasilakos, A. V., & Min-You, W. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef Liu, X.-Y., Zhu, Y., Kong, L., Cong Liu, Y., Vasilakos, A. V., & Min-You, W. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef
27.
Zurück zum Zitat Liu, X.-Y., Aeron, S., Aggarwal, V., Wang, X., & Min-You, W. (2016). Adaptive sampling of RF fingerprints for fine-grained indoor localization. IEEE Transactions on Mobile Computing, 15(10), 2411–2423.CrossRef Liu, X.-Y., Aeron, S., Aggarwal, V., Wang, X., & Min-You, W. (2016). Adaptive sampling of RF fingerprints for fine-grained indoor localization. IEEE Transactions on Mobile Computing, 15(10), 2411–2423.CrossRef
28.
Zurück zum Zitat Waite, A. D. (2001). SONAR for practicing engineers (3rd ed.). Hoboken, NJ: Wiley. Waite, A. D. (2001). SONAR for practicing engineers (3rd ed.). Hoboken, NJ: Wiley.
29.
Zurück zum Zitat Stojanovic, M. (2006). On the relationship between capacity and distance in an underwater acoustic communication channel. In Proceedings of the 1st ACM international workshop on underwater networks, Los Angeles, California, USA, pp. 41–47. Stojanovic, M. (2006). On the relationship between capacity and distance in an underwater acoustic communication channel. In Proceedings of the 1st ACM international workshop on underwater networks, Los Angeles, California, USA, pp. 41–47.
30.
Zurück zum Zitat Isik, M. T., & Akan, O. B. (2009). A three-dimensional localization algorithm for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 8(9), 4457–4463.CrossRef Isik, M. T., & Akan, O. B. (2009). A three-dimensional localization algorithm for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 8(9), 4457–4463.CrossRef
31.
Zurück zum Zitat Zhou, Z., Cui, J. H., & Zhou, S. (2007). Localization for large-scale underwater sensor networks. In Proceedings of IFIP Networking, pp. 108–119.CrossRef Zhou, Z., Cui, J. H., & Zhou, S. (2007). Localization for large-scale underwater sensor networks. In Proceedings of IFIP Networking, pp. 108–119.CrossRef
32.
Zurück zum Zitat Moore, D., Leonard, J., Rus, D., & Teller, S. (2004). Robust distributed network localization with noisy range measurements. In Proceedings of ACM Sensor Systems, Baltimore, MD. Moore, D., Leonard, J., Rus, D., & Teller, S. (2004). Robust distributed network localization with noisy range measurements. In Proceedings of ACM Sensor Systems, Baltimore, MD.
33.
Zurück zum Zitat Xiao, W., Xie, L., Lin, J., & Li, J. (2006). Multi-sensor scheduling for reliable target tracking in wireless sensor networks. In Proceedings of 6th International Conference on ITS Telecommunications, Chengdu, pp. 996–1000. Xiao, W., Xie, L., Lin, J., & Li, J. (2006). Multi-sensor scheduling for reliable target tracking in wireless sensor networks. In Proceedings of 6th International Conference on ITS Telecommunications, Chengdu, pp. 996–1000.
34.
Zurück zum Zitat Li, C., Chang, Y., Hung, C., & Chuang, C. (2015). Position estimation and smooth tracking with a fuzzy-logic-based adaptive strong tracking Kalman filter for capacitive touch panels. IEEE Transactions on Industrial Electronics, 62(8), 5097–5108.CrossRef Li, C., Chang, Y., Hung, C., & Chuang, C. (2015). Position estimation and smooth tracking with a fuzzy-logic-based adaptive strong tracking Kalman filter for capacitive touch panels. IEEE Transactions on Industrial Electronics, 62(8), 5097–5108.CrossRef
35.
Zurück zum Zitat Hu, X., Hu, Y., & Xu, B. (2014). Generalised Kalman filter tracking with multiplicative measurement noise in a wireless sensor network. IET Signal Processing, 8(5), 467–474.CrossRef Hu, X., Hu, Y., & Xu, B. (2014). Generalised Kalman filter tracking with multiplicative measurement noise in a wireless sensor network. IET Signal Processing, 8(5), 467–474.CrossRef
36.
Zurück zum Zitat Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRef
Metadaten
Titel
An adaptive target tracking method for 3D underwater wireless sensor networks
verfasst von
Mehrnaz Poostpasand
Reza Javidan
Publikationsdatum
08.04.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1506-1

Weitere Artikel der Ausgabe 8/2018

Wireless Networks 8/2018 Zur Ausgabe

Neuer Inhalt