Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

28.04.2020

An Efficient Approach for Enhancing Contrast Level and Segmenting Satellite Images: HNN and FCM Approach

verfasst von: Ramesh Chandra Sahoo, Sateesh Kumar Pradhan

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Satellite image segmentation has gotten bunches of consideration of late because of the accessibility of commented on high-goals image informational indexes caught by the last age of satellites. The issue of fragmenting a satellite image can be characterized as ordering (or marking) every pixel of the image as indicated by various classes, for example, structures, streets, water, etc. In this paper centered to build up a satellite image segmenting process by utilizing distinctive optimization methods. The work is prepared dependent on three stages that are RGB change, preprocessing, and division. At first the database images are assembled from the database at that point select the blue band images by performing RGB change. To improve the differentiation and furthermore decreasing the commotion of these chose blue band images, Hopfield neural network (HNN) is utilized. After image upgrade, the images are fragmented dependent on fuzzy C means (FCM) clustering method. The images are clustered and segmented in the way of optimizing the centroid in FCM utilizing oppositional crow search algorithm. The exhibition of the proposed framework is investigated dependent on the presentation measurements, for example, affectability, particularity and accuracy. From the outcomes, the proposed strategy diminished the computational time by expanding the accuracy of 98.3% with HNN system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kalist, V., Ganesan, P., Sathish, B. S., Jenitha, J. M. M., & Bashashaik, K. (2015). Possiblistic-fuzzy C-means clustering approach for the segmentation of satellite images in HSL color space. Procedia Computer Science, 57, 49–56.CrossRef Kalist, V., Ganesan, P., Sathish, B. S., Jenitha, J. M. M., & Bashashaik, K. (2015). Possiblistic-fuzzy C-means clustering approach for the segmentation of satellite images in HSL color space. Procedia Computer Science, 57, 49–56.CrossRef
2.
Zurück zum Zitat Banerjee, B., & Buddhiraju, K. M. (2012). Satellite image segmentation: A novel adaptive mean-shift clustering based approach. In 2012 IEEE International geoscience and remote sensing symposium. Banerjee, B., & Buddhiraju, K. M. (2012). Satellite image segmentation: A novel adaptive mean-shift clustering based approach. In 2012 IEEE International geoscience and remote sensing symposium.
3.
Zurück zum Zitat Ganesan, P., & Rajini, V. (2014). YIQ color space based satellite image segmentation using modified FCM clustering and histogram equalization. In 2014 International conference on advances in electrical engineering (ICAEE). Ganesan, P., & Rajini, V. (2014). YIQ color space based satellite image segmentation using modified FCM clustering and histogram equalization. In 2014 International conference on advances in electrical engineering (ICAEE).
4.
Zurück zum Zitat Deepika, N. P., & Vishnu, K. (2015). Different techniques for satellite image segmentation. In 2015 Online international conference on green engineering and technologies (IC-GET). Deepika, N. P., & Vishnu, K. (2015). Different techniques for satellite image segmentation. In 2015 Online international conference on green engineering and technologies (IC-GET).
5.
Zurück zum Zitat Ganesan, P., & Sajiv, G. (2017). User oriented color space for satellite image segmentation using fuzzy based techniques. In 2017 International conference on innovations in information, embedded and communication systems (ICIIECS). Ganesan, P., & Sajiv, G. (2017). User oriented color space for satellite image segmentation using fuzzy based techniques. In 2017 International conference on innovations in information, embedded and communication systems (ICIIECS).
6.
Zurück zum Zitat Ben Arab, T., Zribi, M., & Masmoudi, A. (2013). Unsupervised satellite image segmentation using a Bivariate Beta type-II mixture model. In 2013 IEEE 9th international conference on computational cybernetics (ICCC). Ben Arab, T., Zribi, M., & Masmoudi, A. (2013). Unsupervised satellite image segmentation using a Bivariate Beta type-II mixture model. In 2013 IEEE 9th international conference on computational cybernetics (ICCC).
7.
Zurück zum Zitat Jia, H., Sun, K., Song, W., Peng, X., Lang, C., & Li, Y. (2019). Multi-strategy emperor penguin optimizer for RGB histogram-based color satellite image segmentation using masi entropy. IEEE Access,7, 134448–134474.CrossRef Jia, H., Sun, K., Song, W., Peng, X., Lang, C., & Li, Y. (2019). Multi-strategy emperor penguin optimizer for RGB histogram-based color satellite image segmentation using masi entropy. IEEE Access,7, 134448–134474.CrossRef
8.
Zurück zum Zitat Zhou, Y., Li, J., Feng, L., Zhang, X., & Hu, X. (2017). Adaptive scale selection for multiscale segmentation of satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(8), 3641–3651.CrossRef Zhou, Y., Li, J., Feng, L., Zhang, X., & Hu, X. (2017). Adaptive scale selection for multiscale segmentation of satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(8), 3641–3651.CrossRef
9.
Zurück zum Zitat Ghassemi, S., Fiandrotti, A., Francini, G., & Magli, E. (2019). Learning and adapting robust features for satellite image segmentation on heterogeneous data sets. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6517–6529.CrossRef Ghassemi, S., Fiandrotti, A., Francini, G., & Magli, E. (2019). Learning and adapting robust features for satellite image segmentation on heterogeneous data sets. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6517–6529.CrossRef
10.
Zurück zum Zitat Henry, C., Azimi, S. M., & Merkle, N. (2018). Road segmentation in sar satellite images with deep fully convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 15(12), 1867–1871.CrossRef Henry, C., Azimi, S. M., & Merkle, N. (2018). Road segmentation in sar satellite images with deep fully convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 15(12), 1867–1871.CrossRef
11.
Zurück zum Zitat Nalepa, J., Myller, M., & Kawulok, M. (2019). Validating hyperspectral image segmentation. IEEE Geoscience and Remote Sensing Letters, 16(8), 1264–1268.CrossRef Nalepa, J., Myller, M., & Kawulok, M. (2019). Validating hyperspectral image segmentation. IEEE Geoscience and Remote Sensing Letters, 16(8), 1264–1268.CrossRef
12.
Zurück zum Zitat Sedov, A. G., Khryashchev, V. V., Larionov, R. V., & Ostrovskaya, A. A. (2019). Loss function selection in a problem of satellite image segmentation using convolutional neural network. In 2019 Systems of signal synchronization, generating and processing in telecommunications (SYNCHROINFO). Sedov, A. G., Khryashchev, V. V., Larionov, R. V., & Ostrovskaya, A. A. (2019). Loss function selection in a problem of satellite image segmentation using convolutional neural network. In 2019 Systems of signal synchronization, generating and processing in telecommunications (SYNCHROINFO).
13.
Zurück zum Zitat Nivaggioli, A., & Randrianarivo, H. (2019). Weakly supervised semantic segmentation of satellite images. In 2019 Joint urban remote sensing event (JURSE). Nivaggioli, A., & Randrianarivo, H. (2019). Weakly supervised semantic segmentation of satellite images. In 2019 Joint urban remote sensing event (JURSE).
14.
Zurück zum Zitat Deepika, N. P., Subha, M. S. L., & Gopal, V. (2015). Pattern extraction in segmented satellite images by reducing semantic gap using relevance feedback mechanism. Procedia Computer Science,46, 1809–1816.CrossRef Deepika, N. P., Subha, M. S. L., & Gopal, V. (2015). Pattern extraction in segmented satellite images by reducing semantic gap using relevance feedback mechanism. Procedia Computer Science,46, 1809–1816.CrossRef
15.
Zurück zum Zitat Cao, L., Wang, C., & Li, J. (2016). Vehicle detection from highway satellite images via transfer learning. Information Sciences,366, 177–187.MathSciNetCrossRef Cao, L., Wang, C., & Li, J. (2016). Vehicle detection from highway satellite images via transfer learning. Information Sciences,366, 177–187.MathSciNetCrossRef
16.
Zurück zum Zitat Wang, S., Yang, B., Zhou, Y., Wang, F., Zhang, R., & Zhao, Q. (2018). Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring. Geomorphology,309, 77–85.CrossRef Wang, S., Yang, B., Zhou, Y., Wang, F., Zhang, R., & Zhao, Q. (2018). Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring. Geomorphology,309, 77–85.CrossRef
17.
Zurück zum Zitat Ada, N., Harsono, T., & Basuki, A. (2018). Cloud satellite image segmentation using MengHeeHeng K-means and DBSCAN clustering. In 2018 International electronics symposium on knowledge creation and intelligent computing (IES-KCIC). Ada, N., Harsono, T., & Basuki, A. (2018). Cloud satellite image segmentation using MengHeeHeng K-means and DBSCAN clustering. In 2018 International electronics symposium on knowledge creation and intelligent computing (IES-KCIC).
18.
Zurück zum Zitat Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications,41(7), 3538–3560.CrossRef Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications,41(7), 3538–3560.CrossRef
19.
Zurück zum Zitat Bhandari, A. K., Kumar, A., & Singh, G. K. (2015). Modified artificial bee colony based computationally efficient multilevel thresholdingfor satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Systems with Applications,42(3), 1573–1601.CrossRef Bhandari, A. K., Kumar, A., & Singh, G. K. (2015). Modified artificial bee colony based computationally efficient multilevel thresholdingfor satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Systems with Applications,42(3), 1573–1601.CrossRef
20.
Zurück zum Zitat Bhandari, A. K., Kumar, A., & Singh, G. K. (2015). Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Systems with Applications,42(22), 8707–8730.CrossRef Bhandari, A. K., Kumar, A., & Singh, G. K. (2015). Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Systems with Applications,42(22), 8707–8730.CrossRef
21.
Zurück zum Zitat Sammouda, R., Adgaba, N., Touir, A., & Al-Ghamdi, A. (2014). Agriculture satellite image segmentation using a modified artificial Hopfield neural network. Computers in Human Behavior,30, 436–441.CrossRef Sammouda, R., Adgaba, N., Touir, A., & Al-Ghamdi, A. (2014). Agriculture satellite image segmentation using a modified artificial Hopfield neural network. Computers in Human Behavior,30, 436–441.CrossRef
22.
Zurück zum Zitat Pare, S., Bhandari, A. K., Kumar, A., Singh, G. K., & Khare, S. (2015). Satellite image segmentation based on different objective functions using genetic algorithm: A comparative study. In 2015 IEEE International conference on digital signal processing (DSP). Pare, S., Bhandari, A. K., Kumar, A., Singh, G. K., & Khare, S. (2015). Satellite image segmentation based on different objective functions using genetic algorithm: A comparative study. In 2015 IEEE International conference on digital signal processing (DSP).
23.
Zurück zum Zitat Ganesan, P., & Rajini, V. (2014). Assessment of satellite image segmentation in RGB and HSV color space using image quality measures. In 2014 International conference on advances in electrical engineering (ICAEE). Ganesan, P., & Rajini, V. (2014). Assessment of satellite image segmentation in RGB and HSV color space using image quality measures. In 2014 International conference on advances in electrical engineering (ICAEE).
24.
Zurück zum Zitat Muangkote, N., Sunat, K., & Chiewchanwattana, S. (2016). Multilevel thresholding for satellite image segmentation with moth-flame based optimization. In 2016 13th International joint conference on computer science and software engineering (JCSSE). Muangkote, N., Sunat, K., & Chiewchanwattana, S. (2016). Multilevel thresholding for satellite image segmentation with moth-flame based optimization. In 2016 13th International joint conference on computer science and software engineering (JCSSE).
25.
Zurück zum Zitat Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014). Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT–SVD. ISA Transactions,53(4), 1286–1296.CrossRef Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014). Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT–SVD. ISA Transactions,53(4), 1286–1296.CrossRef
26.
Zurück zum Zitat Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Namazi, H., & Dudkowski, D. (2019). Chimera in a network of memristor-based Hopfield neural network. The European Physical Journal Special Topics,228(10), 2023–2033.CrossRef Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Namazi, H., & Dudkowski, D. (2019). Chimera in a network of memristor-based Hopfield neural network. The European Physical Journal Special Topics,228(10), 2023–2033.CrossRef
27.
Zurück zum Zitat Deng, Z. H., Qiao, H. H., Song, Q., & Gao, L. (2019). A complex network community detection algorithm based on label propagation and fuzzy C-means. Physica A: Statistical Mechanics and its Applications,519, 217–226.CrossRef Deng, Z. H., Qiao, H. H., Song, Q., & Gao, L. (2019). A complex network community detection algorithm based on label propagation and fuzzy C-means. Physica A: Statistical Mechanics and its Applications,519, 217–226.CrossRef
28.
Zurück zum Zitat Yamini, M. P. C. (2019). A violent crime analysis using fuzzy c-means clustering approach. ICTACT Journal on Soft Computing,9(3), 1939–1944. Yamini, M. P. C. (2019). A violent crime analysis using fuzzy c-means clustering approach. ICTACT Journal on Soft Computing,9(3), 1939–1944.
29.
Zurück zum Zitat Zhang, H., Ma, J., Jing, J., & Li, P. (2019). Fabric defect detection using L0 gradient minimization and fuzzy C-means. Applied Sciences,9(17), 3506.CrossRef Zhang, H., Ma, J., Jing, J., & Li, P. (2019). Fabric defect detection using L0 gradient minimization and fuzzy C-means. Applied Sciences,9(17), 3506.CrossRef
30.
Zurück zum Zitat Sayed, G. I., Hassanien, A. E., & Azar, A. T. (2019). Feature selection via a novel chaotic crow search algorithm. Neural Computing and Applications,31(1), 171–188.CrossRef Sayed, G. I., Hassanien, A. E., & Azar, A. T. (2019). Feature selection via a novel chaotic crow search algorithm. Neural Computing and Applications,31(1), 171–188.CrossRef
31.
Zurück zum Zitat Zamani, H., Nadimi-Shahraki, M. H., & Gandomi, A. H. (2019). CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems. Applied Soft Computing,85, 105583.CrossRef Zamani, H., Nadimi-Shahraki, M. H., & Gandomi, A. H. (2019). CCSA: Conscious neighborhood-based crow search algorithm for solving global optimization problems. Applied Soft Computing,85, 105583.CrossRef
Metadaten
Titel
An Efficient Approach for Enhancing Contrast Level and Segmenting Satellite Images: HNN and FCM Approach
verfasst von
Ramesh Chandra Sahoo
Sateesh Kumar Pradhan
Publikationsdatum
28.04.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07247-9

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt