Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

An efficient controlled semi-quantum secret sharing protocol with entangled state

verfasst von: Monireh Houshmand, Shima Hassanpour, Majid Haghparast

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present an entangled state controlled semi-quantum secret sharing CSQSS protocol for the first time. In this scheme, with the permission of a trusted classical user, \(Bob_{1}\), Alice, as a quantum user, can share a one-bit specific message with n classical users, and the secret can only be recovered by the cooperation of all classical users. Then, the protocol is extended where m-bit specific messages, K \((k_{1}, k_{2},..., k_{m})\), can be shared with n classical users. The security of the proposed protocol against common attacks is analysed in detail, which shows that the proposed protocol is theoretically secure. Compared with previous SQSS protocols, the proposed protocol can achieve a lower cost because it does not use returning qubits for producing the secret message, uses fewer returning qubits for eavesdropping check, and does not perform entangled state measurement. Moreover, the proposed protocol has the highest qubit efficiency among the previous SQSS schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography, Proceedings of the international conference on computers, systems and signal processing, 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography, Proceedings of the international conference on computers, systems and signal processing, 175–179 (1984)
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoretical Computer Science 560, 7–11 (2014) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoretical Computer Science 560, 7–11 (2014)
Zurück zum Zitat Bin, G., Yu-Gai, H., Xia, F., Cheng-Yi, Z.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309–100312 (2011)CrossRef Bin, G., Yu-Gai, H., Xia, F., Cheng-Yi, Z.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309–100312 (2011)CrossRef
Zurück zum Zitat Blakley, G.R.: Safeguarding cryptographic keys. Safeguarding cryptographic keys. Managing requirements knowledge, international workshop on. IEEE Computer Society (1979) Blakley, G.R.: Safeguarding cryptographic keys. Safeguarding cryptographic keys. Managing requirements knowledge, international workshop on. IEEE Computer Society (1979)
Zurück zum Zitat Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob, First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07). IEEE (2007) Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob, First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07). IEEE (2007)
Zurück zum Zitat Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130–1650140 (2016)ADSMathSciNetCrossRef Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130–1650140 (2016)ADSMathSciNetCrossRef
Zurück zum Zitat Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)CrossRef Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56(8), 2512–2520 (2017)CrossRef
Zurück zum Zitat Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14(2), 739–753 (2015)ADSMathSciNetCrossRef Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14(2), 739–753 (2015)ADSMathSciNetCrossRef
Zurück zum Zitat Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)ADSMathSciNetCrossRef Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)ADSMathSciNetCrossRef
Zurück zum Zitat Khorrampanah, M., Houshmand, M.: Effectively combined multi-party quantum secret sharing and secure direct communication. Opt. Quantam Electron. 54(4), 213–222 (2022)CrossRef Khorrampanah, M., Houshmand, M.: Effectively combined multi-party quantum secret sharing and secure direct communication. Opt. Quantam Electron. 54(4), 213–222 (2022)CrossRef
Zurück zum Zitat Khorrampanah, M., Houshmand, M., Sadeghizadeh, M., Aghababa, H., Mafi, Y.: Enhanced multiparty quantum secret sharing protocol based on quantum secure direct communication and corresponding qubits in noisy environment. Opt. Quantam Electron. 54(12), 832–840 (2022)CrossRef Khorrampanah, M., Houshmand, M., Sadeghizadeh, M., Aghababa, H., Mafi, Y.: Enhanced multiparty quantum secret sharing protocol based on quantum secure direct communication and corresponding qubits in noisy environment. Opt. Quantam Electron. 54(12), 832–840 (2022)CrossRef
Zurück zum Zitat Li, X.-Y., Chang, Y., Zhang, S.-B.: Multi-party semi-quantum secret sharing scheme based on bell states, 6th International Conference, Artificial Intelligence and Security (2020) Li, X.-Y., Chang, Y., Zhang, S.-B.: Multi-party semi-quantum secret sharing scheme based on bell states, 6th International Conference, Artificial Intelligence and Security (2020)
Zurück zum Zitat Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321–022331 (2008)ADSCrossRef Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321–022331 (2008)ADSCrossRef
Zurück zum Zitat Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303–022313 (2010)ADSCrossRef Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303–022313 (2010)ADSCrossRef
Zurück zum Zitat Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A: Math. Theor. 46(4), 045304–045315 (2013)ADSMathSciNetCrossRef Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A: Math. Theor. 46(4), 045304–045315 (2013)ADSMathSciNetCrossRef
Zurück zum Zitat Liao, Q., Liu, H., Zhu, L., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103(3), 032410–032423 (2021)ADSMathSciNetCrossRef Liao, Q., Liu, H., Zhu, L., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103(3), 032410–032423 (2021)ADSMathSciNetCrossRef
Zurück zum Zitat Nielsen, M.A., Chuang, I.: Quantum computation and quantum information, Vol. 2. Cambridge university press (2002) Nielsen, M.A., Chuang, I.: Quantum computation and quantum information, Vol. 2. Cambridge university press (2002)
Zurück zum Zitat Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetCrossRef Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetCrossRef
Zurück zum Zitat Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475–478 (2014)ADSCrossRef Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475–478 (2014)ADSCrossRef
Zurück zum Zitat Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050–1250060 (2012)MathSciNetCrossRef Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050–1250060 (2012)MathSciNetCrossRef
Zurück zum Zitat Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(12), 802–803 (1982)ADSCrossRef Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(12), 802–803 (1982)ADSCrossRef
Zurück zum Zitat Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)MathSciNetCrossRef Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)MathSciNetCrossRef
Zurück zum Zitat Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002–025025 (2020)ADSMathSciNetCrossRef Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002–025025 (2020)ADSMathSciNetCrossRef
Zurück zum Zitat Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052–1350060 (2013)MathSciNetCrossRef Yang, C.-W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052–1350060 (2013)MathSciNetCrossRef
Zurück zum Zitat Yang, C.-W., Tsai, C.-W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19(5), 1–14 (2020)ADSMathSciNetCrossRef Yang, C.-W., Tsai, C.-W.: Efficient and secure dynamic quantum secret sharing protocol based on bell states. Quantum Inf. Process. 19(5), 1–14 (2020)ADSMathSciNetCrossRef
Zurück zum Zitat Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 256–273 (2021)MathSciNetCrossRef Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60(1), 256–273 (2021)MathSciNetCrossRef
Zurück zum Zitat Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)MathSciNetCrossRef Yin, A., Fu, F.: Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 55(9), 4027–4035 (2016)MathSciNetCrossRef
Zurück zum Zitat Yin, H.-L., Fu, Y., Mao, Y., Chen, Z.-B.: Detector-decoy quantum key distribution without monitoring signal disturbance. Phys. Rev. A 93(2), 022330–022341 (2016)ADSCrossRef Yin, H.-L., Fu, Y., Mao, Y., Chen, Z.-B.: Detector-decoy quantum key distribution without monitoring signal disturbance. Phys. Rev. A 93(2), 022330–022341 (2016)ADSCrossRef
Zurück zum Zitat Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 1–14 (2017)MathSciNetCrossRef Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 1–14 (2017)MathSciNetCrossRef
Zurück zum Zitat Yuan, H., Pan, G.-Z.: Bidirectional quantum-controlled teleportation using six-qubit cluster state without remote joint operation. Mod. Phys. Lett. A 35(25), 2050192–2050199 (2020)ADSMathSciNetCrossRef Yuan, H., Pan, G.-Z.: Bidirectional quantum-controlled teleportation using six-qubit cluster state without remote joint operation. Mod. Phys. Lett. A 35(25), 2050192–2050199 (2020)ADSMathSciNetCrossRef
Zurück zum Zitat Zhang, C.-M., Song, X.-T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.-W., Yin, Z.-Q., Chen, W., Han, Z.-F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)CrossRef Zhang, C.-M., Song, X.-T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.-W., Yin, Z.-Q., Chen, W., Han, Z.-F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)CrossRef
Zurück zum Zitat Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys., Mech. Astron. 63(3), 1–6 (2020)ADSCrossRef Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys., Mech. Astron. 63(3), 1–6 (2020)ADSCrossRef
Metadaten
Titel
An efficient controlled semi-quantum secret sharing protocol with entangled state
verfasst von
Monireh Houshmand
Shima Hassanpour
Majid Haghparast
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06434-3

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt