Skip to main content
Erschienen in: Telecommunication Systems 4/2020

20.04.2020

An efficient design and implementation of Vedic multiplier in quantum-dot cellular automata

verfasst von: B. Naresh Kumar Reddy, B. Veena Vani, G. Bhavya Lahari

Erschienen in: Telecommunication Systems | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Quantum-Dot Cellular Automata (QCA) is an incipient nanotechnology in contrast to the CMOS technology with appealing features like low power consumption, high speed and reduced size in implementing the architecture for the computations. QCA provides better and well-organised solution with a modern and exclusive result in performing logical computations at Nano-scale. In this paper mainly focused on design and implementation of 8 \(\times \) 8 Vedic multiplier with the help of 4 \(\times \) 4 Vedic multiplier using Nikhilam and Anurupayan Sutra. The simulation results achieved with the help of QCA Designer tool shows that the area and delay of the proposed 8 \(\times \) 8 Vedic multiplier is decreased by an average of 45.8% and 72.6%, 82.5% and 80.7%, and 17.24% and 21% respectively when compared to 8 \(\times \) 8 Array multiplier, 8 \(\times \) 8 Wallace multiplier, and 8 \(\times \) 8 Urdhva Tiryagbhyam Vedic multiplier. Furthermore, the proposed multiplier is implemented on Kintex-7 (KC705) FPGA board. The results revealed a reduction in area and delay compared to a well-known prior art multipliers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kummamuru, R. K., Orlov, A. O., Ramasubramaniam, R., Lent, C. S., Bernstein, G. H., & Snider, G. L. (2003). Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Transactions on Electron Devices, 50(9), 1906–1913.CrossRef Kummamuru, R. K., Orlov, A. O., Ramasubramaniam, R., Lent, C. S., Bernstein, G. H., & Snider, G. L. (2003). Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Transactions on Electron Devices, 50(9), 1906–1913.CrossRef
2.
Zurück zum Zitat Rairigh, D. (2005). Limits of CMOS technology scaling and technologies beyond-CMOS. Piscataway: Institute of Electrical and Electronics Engineers. Rairigh, D. (2005). Limits of CMOS technology scaling and technologies beyond-CMOS. Piscataway: Institute of Electrical and Electronics Engineers.
3.
Zurück zum Zitat Porod, W. (1997). Quantum-dot devices and quantum-dot cellular automata. Journal of the Franklin Institute, 334(5), 1147–1175.CrossRef Porod, W. (1997). Quantum-dot devices and quantum-dot cellular automata. Journal of the Franklin Institute, 334(5), 1147–1175.CrossRef
4.
Zurück zum Zitat Zhang, R., Walus, K., Wang, W., & Jullien, G. A. (2005). Performance comparison of quantum-dot cellular automata adders. In IEEE International symposium on circuits and systems. Zhang, R., Walus, K., Wang, W., & Jullien, G. A. (2005). Performance comparison of quantum-dot cellular automata adders. In IEEE International symposium on circuits and systems.
5.
Zurück zum Zitat Gavali, K. R, & Kadam, P. (2016). VLSI design of high speed Vedic multiplier for FPGA implementation. In IEEE international conference on engineering and technology (ICETECH). Gavali, K. R, & Kadam, P. (2016). VLSI design of high speed Vedic multiplier for FPGA implementation. In IEEE international conference on engineering and technology (ICETECH).
6.
Zurück zum Zitat Cho, H., & Swartzlander, E. E. (2007). Adder designs and analyses for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374–383.CrossRef Cho, H., & Swartzlander, E. E. (2007). Adder designs and analyses for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374–383.CrossRef
7.
Zurück zum Zitat Cho, H., & Swartzlander, E. E. (2009). Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers, 58(6), 721–727.CrossRef Cho, H., & Swartzlander, E. E. (2009). Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers, 58(6), 721–727.CrossRef
8.
Zurück zum Zitat Anjana, S., Pradeep, C. & Samuel, P. (2014). Synthesize of high speed floating-point multipliers based on vedic mathematics. In International conference on information and communication technologies. Anjana, S., Pradeep, C. & Samuel, P. (2014). Synthesize of high speed floating-point multipliers based on vedic mathematics. In International conference on information and communication technologies.
9.
Zurück zum Zitat Naregal, K., Hebbar, P. K., & Chandu, Y. (2017). Design and implementation of high efficiency vedic binary multiplier circuit based on squaring circuits. In IEEE international conference on recent trends in electronics information & communication technology (RTEICT). Naregal, K., Hebbar, P. K., & Chandu, Y. (2017). Design and implementation of high efficiency vedic binary multiplier circuit based on squaring circuits. In IEEE international conference on recent trends in electronics information & communication technology (RTEICT).
10.
Zurück zum Zitat Mistri, N. R., Somani, S. B., & Shete, V. V. (2016). Design and comparison of multiplier using vedic mathematics. In IEEE international conference on inventive computation technologies (ICICT). Mistri, N. R., Somani, S. B., & Shete, V. V. (2016). Design and comparison of multiplier using vedic mathematics. In IEEE international conference on inventive computation technologies (ICICT).
11.
Zurück zum Zitat Dwivedi, S. P. (2013). An efficient multiplication algorithm using Nikhilam method. In IEEE fifth international conference on advances in recent technologies in communication and computing. Dwivedi, S. P. (2013). An efficient multiplication algorithm using Nikhilam method. In IEEE fifth international conference on advances in recent technologies in communication and computing.
12.
Zurück zum Zitat Bansal, Y., Madhu, C., & Kaur, P. (2014). High speed vedic multiplier designs. In IEEE recent advances in engineering and computational sciences (RAECS). Bansal, Y., Madhu, C., & Kaur, P. (2014). High speed vedic multiplier designs. In IEEE recent advances in engineering and computational sciences (RAECS).
13.
Zurück zum Zitat Ram, G. C., Rani, D. S., Balasaikesava, R., & Sindhuri, K. B. (2016). Design of delay efficient modified 16 bit wallace multiplier. In IEEE international conference on recent trends in electronics, information & communication technology. Ram, G. C., Rani, D. S., Balasaikesava, R., & Sindhuri, K. B. (2016). Design of delay efficient modified 16 bit wallace multiplier. In IEEE international conference on recent trends in electronics, information & communication technology.
14.
Zurück zum Zitat Hassan, S. Z. (2017). Design and simulation of enhanced 64-bit vedic multiplier. In IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT). Hassan, S. Z. (2017). Design and simulation of enhanced 64-bit vedic multiplier. In IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT).
15.
Zurück zum Zitat Chudasama, A., & NathSasamal, T. (2016). Implementation of 4 \(\times \) 4 vedic multiplier using carry save adder in quantum-dot cellular automata. In IEEE international conference on communication and signal processing. Chudasama, A., & NathSasamal, T. (2016). Implementation of 4 \(\times \) 4 vedic multiplier using carry save adder in quantum-dot cellular automata. In IEEE international conference on communication and signal processing.
16.
Zurück zum Zitat Ram, G. C., Rani, D. S., Balasaikesava, R., & Sindhuri, K. B. (2016). VLSI architecture for delay efficient 32-bit multiplier using vedic mathematic sutras. In IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). Ram, G. C., Rani, D. S., Balasaikesava, R., & Sindhuri, K. B. (2016). VLSI architecture for delay efficient 32-bit multiplier using vedic mathematic sutras. In IEEE international conference on recent trends in electronics, information & communication technology (RTEICT).
17.
Zurück zum Zitat Kim, K., Wu, K., & Karri, R. (2007). The robust QCA adder designs using composable QCA building blocks. In IEEE transactions on computer-aided design of integrated circuits and systems Vol. 26, No. 1. Kim, K., Wu, K., & Karri, R. (2007). The robust QCA adder designs using composable QCA building blocks. In IEEE transactions on computer-aided design of integrated circuits and systems Vol. 26, No. 1.
18.
Zurück zum Zitat Kim, S.-W., & Earl, E. (2009). Parallel multipliers for quantum-dot cellular automata. In IEEE conference on nanotechnology materials and devices. Kim, S.-W., & Earl, E. (2009). Parallel multipliers for quantum-dot cellular automata. In IEEE conference on nanotechnology materials and devices.
19.
Zurück zum Zitat Chudasama, A., Sasamal, T. N., & Yadav, J. (2018). An efficient design of Vedic multiplier using ripple carry adder in quantum-dot cellular automata. Computers and Electrical Engineering, 65, 527–542.CrossRef Chudasama, A., Sasamal, T. N., & Yadav, J. (2018). An efficient design of Vedic multiplier using ripple carry adder in quantum-dot cellular automata. Computers and Electrical Engineering, 65, 527–542.CrossRef
20.
Zurück zum Zitat Reddy, B. N. K. (2019). Design and implementation of high performance and area efficient square architecture using Vedic mathematics. In Analog integrated circuits and signal processing. Reddy, B. N. K. (2019). Design and implementation of high performance and area efficient square architecture using Vedic mathematics. In Analog integrated circuits and signal processing.
23.
Zurück zum Zitat Beechu, N. K. R., et al. (2017). System level fault-tolerance core mapping and FPGA-based verification of NoC. Microelectronics Journal, 70, 16–26.CrossRef Beechu, N. K. R., et al. (2017). System level fault-tolerance core mapping and FPGA-based verification of NoC. Microelectronics Journal, 70, 16–26.CrossRef
24.
Zurück zum Zitat Beechu, N. K. R., et al. (2018). Hardware implementation of fault tolerance NoC core mapping. Telecommunication Systems, 68(4), 621–630.CrossRef Beechu, N. K. R., et al. (2018). Hardware implementation of fault tolerance NoC core mapping. Telecommunication Systems, 68(4), 621–630.CrossRef
25.
Zurück zum Zitat Beechu, N. K. R., et al. (2017). High-performance and energy-efficient fault-tolerance core mapping in NoC. Sustainable Computing: Informatics and Systems, 16, 1–10. Beechu, N. K. R., et al. (2017). High-performance and energy-efficient fault-tolerance core mapping in NoC. Sustainable Computing: Informatics and Systems, 16, 1–10.
26.
Zurück zum Zitat Reddy, B. N. K., Suresh, N., Ramesh, J. V. N., Pavithra, T., Bahulya, Y. K., Edavoor, P. J., Ram, S. J. (2015). An effiient approach for design and testing of FPGA programming using LabVIEW. In International conference on advanced computing, networking and informatics: ICACNI. Reddy, B. N. K., Suresh, N., Ramesh, J. V. N., Pavithra, T., Bahulya, Y. K., Edavoor, P. J., Ram, S. J. (2015). An effiient approach for design and testing of FPGA programming using LabVIEW. In International conference on advanced computing, networking and informatics: ICACNI.
Metadaten
Titel
An efficient design and implementation of Vedic multiplier in quantum-dot cellular automata
verfasst von
B. Naresh Kumar Reddy
B. Veena Vani
G. Bhavya Lahari
Publikationsdatum
20.04.2020
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 4/2020
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00669-7

Weitere Artikel der Ausgabe 4/2020

Telecommunication Systems 4/2020 Zur Ausgabe

Neuer Inhalt