Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 5/2020

15.09.2020 | Research Paper

An efficient method for time-dependent reliability prediction using domain adaptation

verfasst von: Tayyab Zafar, Zhonglai Wang

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to dynamic uncertainties presence in service and performance conditions, time-dependent reliability prediction of a component or structure is a challenging problem. In this research, a transfer learning-based technique is proposed to predict the reliability in the future. The complete time interval is divided into two sub-intervals namely, present interval and future interval. It is assumed that the performance function information is available for the present interval only. Transfer learning, specifically domain adaptation is used to transform the stochastic processes to be represented in a way that their sample spaces in different time durations are made closer while maintaining some of their statistical properties such as variance. In order to transform the stochastic processes, correlated samples of stochastic processes are generated using a space-filling sampling technique for the complete time interval. An adaptive Kriging surrogate model is then built using the performance information available for the present interval only using transformed stochastic process samples. The built Kriging model is employed to estimate and predict the reliability for present and future intervals without retraining it using future data. Results show that the proposed method can predict the failure probability in present and future intervals accurately with significant efficiency improvement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf 84:75–86CrossRef Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf 84:75–86CrossRef
Zurück zum Zitat Bataleblu AA (2019) Computational intelligence and its applications in uncertainty-based design optimization. Bridge Optimization-Inspection and Condition Monitoring. IntechOpen, In Bataleblu AA (2019) Computational intelligence and its applications in uncertainty-based design optimization. Bridge Optimization-Inspection and Condition Monitoring. IntechOpen, In
Zurück zum Zitat Dellino G, Meloni C (2015) Uncertainty management in simulation-optimization of complex systems. Springer Dellino G, Meloni C (2015) Uncertainty management in simulation-optimization of complex systems. Springer
Zurück zum Zitat Du X (2014) Time-dependent mechanism reliability analysis with envelope functions and first-order approximation. J Mech Des 136:81010CrossRef Du X (2014) Time-dependent mechanism reliability analysis with envelope functions and first-order approximation. J Mech Des 136:81010CrossRef
Zurück zum Zitat Dubourg V, Sudret B, Bourinet J-M (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidiscip Optim 44:673–690CrossRef Dubourg V, Sudret B, Bourinet J-M (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidiscip Optim 44:673–690CrossRef
Zurück zum Zitat Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33:145–154CrossRef Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33:145–154CrossRef
Zurück zum Zitat Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measuring statistical dependence with Hilbert-Schmidt norms. International conference on algorithmic learning theory. Springer, In, pp 63–77MATH Gretton A, Bousquet O, Smola A, Schölkopf B (2005) Measuring statistical dependence with Hilbert-Schmidt norms. International conference on algorithmic learning theory. Springer, In, pp 63–77MATH
Zurück zum Zitat Hu Z, Du X (2013a) Time-dependent reliability analysis with joint upcrossing rates. Struct Multidiscip Optim 48:893–907MathSciNetCrossRef Hu Z, Du X (2013a) Time-dependent reliability analysis with joint upcrossing rates. Struct Multidiscip Optim 48:893–907MathSciNetCrossRef
Zurück zum Zitat Hu Z, Du X (2013b) A sampling approach to extreme value distribution for time-dependent reliability analysis. J Mech Des 135:071003CrossRef Hu Z, Du X (2013b) A sampling approach to extreme value distribution for time-dependent reliability analysis. J Mech Des 135:071003CrossRef
Zurück zum Zitat Hu Z, Du X (2015) Mixed efficient global optimization for time-dependent reliability analysis. J Mech Des 137:051401CrossRef Hu Z, Du X (2015) Mixed efficient global optimization for time-dependent reliability analysis. J Mech Des 137:051401CrossRef
Zurück zum Zitat Hu Z, Mahadevan S (2016) A single-loop kriging surrogate modeling for time-dependent reliability analysis. J Mech Des 138:61406CrossRef Hu Z, Mahadevan S (2016) A single-loop kriging surrogate modeling for time-dependent reliability analysis. J Mech Des 138:61406CrossRef
Zurück zum Zitat Jiang M, Huang Z, Qiu L et al (2017) Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans Evol Comput 22:501–514CrossRef Jiang M, Huang Z, Qiu L et al (2017) Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Trans Evol Comput 22:501–514CrossRef
Zurück zum Zitat Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492MathSciNetCrossRef Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492MathSciNetCrossRef
Zurück zum Zitat Li C-C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119:1136–1154CrossRef Li C-C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119:1136–1154CrossRef
Zurück zum Zitat Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE: a Matlab kriging toolbox. Citeseer Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE: a Matlab kriging toolbox. Citeseer
Zurück zum Zitat Lu J, Behbood V, Hao P et al (2015) Transfer learning using computational intelligence: a survey. Knowledge-Based Syst 80:14–23CrossRef Lu J, Behbood V, Hao P et al (2015) Transfer learning using computational intelligence: a survey. Knowledge-Based Syst 80:14–23CrossRef
Zurück zum Zitat Lutes LD, Sarkani S (2004) Random vibrations: analysis of structural and mechanical systems. Butterworth-Heinemann Lutes LD, Sarkani S (2004) Random vibrations: analysis of structural and mechanical systems. Butterworth-Heinemann
Zurück zum Zitat Matasci G, Volpi M, Kanevski M et al (2015) Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans Geosci Remote Sens 53:3550–3564CrossRef Matasci G, Volpi M, Kanevski M et al (2015) Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans Geosci Remote Sens 53:3550–3564CrossRef
Zurück zum Zitat Min ATW, Sagarna R, Gupta A et al (2017) Knowledge transfer through machine learning in aircraft design. IEEE Comput Intell Mag 12:48–60CrossRef Min ATW, Sagarna R, Gupta A et al (2017) Knowledge transfer through machine learning in aircraft design. IEEE Comput Intell Mag 12:48–60CrossRef
Zurück zum Zitat Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef
Zurück zum Zitat Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22:199–210CrossRef Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22:199–210CrossRef
Zurück zum Zitat Rasmussen CE (2003) Gaussian processes in machine learning. Summer School on Machine Learning. Springer, In, pp 63–71MATH Rasmussen CE (2003) Gaussian processes in machine learning. Summer School on Machine Learning. Springer, In, pp 63–71MATH
Zurück zum Zitat Roshanian J, Bataleblu AA, Ebrahimi M (2018) A novel evolution control strategy for surrogate-assisted design optimization. Struct Multidiscip Optim 58:1255–1273CrossRef Roshanian J, Bataleblu AA, Ebrahimi M (2018) A novel evolution control strategy for surrogate-assisted design optimization. Struct Multidiscip Optim 58:1255–1273CrossRef
Zurück zum Zitat Roshanian J, Bataleblu AA, Ebrahimi M (2020) A novel metamodel management strategy for robust trajectory design of an expendable launch vehicle. Proc Inst Mech Eng Part G J Aerosp Eng 234:236–253CrossRef Roshanian J, Bataleblu AA, Ebrahimi M (2020) A novel metamodel management strategy for robust trajectory design of an expendable launch vehicle. Proc Inst Mech Eng Part G J Aerosp Eng 234:236–253CrossRef
Zurück zum Zitat Schneider R, Thöns S, Straub D (2017) Reliability analysis and updating of deteriorating systems with subset simulation. Struct Saf 64:20–36CrossRef Schneider R, Thöns S, Straub D (2017) Reliability analysis and updating of deteriorating systems with subset simulation. Struct Saf 64:20–36CrossRef
Zurück zum Zitat Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press
Zurück zum Zitat Shi Y, Lu Z, Xu L, Chen S (2019) An adaptive multiple-Kriging-surrogate method for time-dependent reliability analysis. Appl Math Model 70:545–571MathSciNetCrossRef Shi Y, Lu Z, Xu L, Chen S (2019) An adaptive multiple-Kriging-surrogate method for time-dependent reliability analysis. Appl Math Model 70:545–571MathSciNetCrossRef
Zurück zum Zitat Singh A, Mourelatos ZP (2010) On the time-dependent reliability of non-monotonic, non-repairable systems. SAE Int J Mater Manuf 3:425–444CrossRef Singh A, Mourelatos ZP (2010) On the time-dependent reliability of non-monotonic, non-repairable systems. SAE Int J Mater Manuf 3:425–444CrossRef
Zurück zum Zitat Stein M (1987) Large sample properties of simulations using Latin hypercube sampling. Technometrics 29:143–151MathSciNetCrossRef Stein M (1987) Large sample properties of simulations using Latin hypercube sampling. Technometrics 29:143–151MathSciNetCrossRef
Zurück zum Zitat Tenne Y, Goh C-K (2010) Computational intelligence in expensive optimization problems. Springer Science & Business MediaCrossRef Tenne Y, Goh C-K (2010) Computational intelligence in expensive optimization problems. Springer Science & Business MediaCrossRef
Zurück zum Zitat Vennell R (2011) Estimating the power potential of tidal currents and the impact of power extraction on flow speeds. Renew Energy 36:3558–3565CrossRef Vennell R (2011) Estimating the power potential of tidal currents and the impact of power extraction on flow speeds. Renew Energy 36:3558–3565CrossRef
Zurück zum Zitat Wang Z, Chen W (2017) Confidence-based adaptive extreme response surface for time-variant reliability analysis under random excitation. Struct Saf 64:76–86CrossRef Wang Z, Chen W (2017) Confidence-based adaptive extreme response surface for time-variant reliability analysis under random excitation. Struct Saf 64:76–86CrossRef
Zurück zum Zitat Wang Z, Wang P (2015) A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis. Reliab Eng Syst Saf 142:346–356CrossRef Wang Z, Wang P (2015) A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis. Reliab Eng Syst Saf 142:346–356CrossRef
Zurück zum Zitat Wang Z, Mourelatos ZP, Li J et al (2014) Time-dependent reliability of dynamic systems using subset simulation with splitting over a series of correlated time intervals. J Mech Des 136:061008CrossRef Wang Z, Mourelatos ZP, Li J et al (2014) Time-dependent reliability of dynamic systems using subset simulation with splitting over a series of correlated time intervals. J Mech Des 136:061008CrossRef
Zurück zum Zitat Wang Z, Cheng X, Liu J (2018) Time-dependent concurrent reliability-based design optimization integrating experiment-based model validation. Struct Multidiscip Optim 57:1523–1531CrossRef Wang Z, Cheng X, Liu J (2018) Time-dependent concurrent reliability-based design optimization integrating experiment-based model validation. Struct Multidiscip Optim 57:1523–1531CrossRef
Zurück zum Zitat Wang Z, Liu J, Yu S (2019) Time-variant reliability prediction for dynamic systems using partial information. Reliab Eng Syst Saf 106756 Wang Z, Liu J, Yu S (2019) Time-variant reliability prediction for dynamic systems using partial information. Reliab Eng Syst Saf 106756
Zurück zum Zitat Yan K, Kou L, Zhang D (2017) Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans Cybern 48:288–299CrossRef Yan K, Kou L, Zhang D (2017) Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans Cybern 48:288–299CrossRef
Zurück zum Zitat Yu S, Wang Z (2018) A novel time-variant reliability analysis method based on failure processes decomposition for dynamic uncertain structures. J Mech Des 140:51401CrossRef Yu S, Wang Z (2018) A novel time-variant reliability analysis method based on failure processes decomposition for dynamic uncertain structures. J Mech Des 140:51401CrossRef
Zurück zum Zitat Yu S, Wang Z (2019) A general decoupling approach for time-and space-variant system reliability-based design optimization. Comput Methods Appl Mech Eng 357:112608MathSciNetCrossRef Yu S, Wang Z (2019) A general decoupling approach for time-and space-variant system reliability-based design optimization. Comput Methods Appl Mech Eng 357:112608MathSciNetCrossRef
Zurück zum Zitat Yu S, Wang Z, Zhang K (2018) Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty. Reliab Eng Syst Saf 170:45–52CrossRef Yu S, Wang Z, Zhang K (2018) Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty. Reliab Eng Syst Saf 170:45–52CrossRef
Zurück zum Zitat Zafar T, Wang Z (2020) Time-dependent reliability prediction using transfer learning. Struct Multidiscip Optim:1–12 Zafar T, Wang Z (2020) Time-dependent reliability prediction using transfer learning. Struct Multidiscip Optim:1–12
Zurück zum Zitat Zhang D, Han X (2020) Kinematic reliability analysis of robotic manipulator. J Mech Des 142 Zhang D, Han X (2020) Kinematic reliability analysis of robotic manipulator. J Mech Des 142
Zurück zum Zitat Zhao H, Yue Z, Liu Y et al (2015) An efficient reliability method combining adaptive importance sampling and Kriging metamodel. Appl Math Model 39:1853–1866MathSciNetCrossRef Zhao H, Yue Z, Liu Y et al (2015) An efficient reliability method combining adaptive importance sampling and Kriging metamodel. Appl Math Model 39:1853–1866MathSciNetCrossRef
Zurück zum Zitat Zhou X-Y, Gosling PD, Ullah Z, Pearce CJ (2016) Exploiting the benefits of multi-scale analysis in reliability analysis for composite structures. Compos Struct 155:197–212CrossRef Zhou X-Y, Gosling PD, Ullah Z, Pearce CJ (2016) Exploiting the benefits of multi-scale analysis in reliability analysis for composite structures. Compos Struct 155:197–212CrossRef
Metadaten
Titel
An efficient method for time-dependent reliability prediction using domain adaptation
verfasst von
Tayyab Zafar
Zhonglai Wang
Publikationsdatum
15.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 5/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02707-z

Weitere Artikel der Ausgabe 5/2020

Structural and Multidisciplinary Optimization 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.