Skip to main content
Erschienen in: Engineering with Computers 2/2022

18.06.2021 | Original Article

An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model

verfasst von: Tayyaba Akram, Muhammad Abbas, Khadijah M. Abualnaja, Azhar Iqbal, Abdul Majeed

Erschienen in: Engineering with Computers | Sonderheft 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Financial theory could introduce a fractional differential equation (FDE) that presents new theoretical research concepts, methods and practical implementations. Due to the memory factor of fractional derivatives, physical pathways with storage and inherited properties can be best represented by FDEs. For that purpose, reliable and effective techniques are required for solving FDEs. Our objective is to generalize the collocation method for solving time fractional Black–Scholes European option pricing model using the extended cubic B-spline. The key feature of the strategy is that it turns these type of problems into a system of algebraic equations which can be appropriate for computer programming. This is not only streamlines the problems but speed up the computations as well. The Fourier stability and convergence analysis of the scheme are examined. A proposed numerical scheme having second-order accuracy via spatial direction is also constructed. The numerical and graphical results indicate that the suggested approach for the European option prices agree well with the analytical solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fan WP, Jiang XY (2014) Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Phys Sin Ch Ed 63:140202–140230CrossRef Fan WP, Jiang XY (2014) Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Phys Sin Ch Ed 63:140202–140230CrossRef
3.
Zurück zum Zitat Hashemi MS, Akgül A (2021) On the MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing: two reliable methods. Eng Comput 37:1–12CrossRef Hashemi MS, Akgül A (2021) On the MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing: two reliable methods. Eng Comput 37:1–12CrossRef
4.
Zurück zum Zitat Magin RL, Ingo C, Colon-Perez L, Triplett W, Mareci TH (2013) Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Microporous Mesoporous Mater 178:39–43CrossRef Magin RL, Ingo C, Colon-Perez L, Triplett W, Mareci TH (2013) Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy. Microporous Mesoporous Mater 178:39–43CrossRef
5.
Zurück zum Zitat Akgül A, Ahmad S, Ullah A, Baleanu D, Akgül EK (2021) A novel method for analysing the fractal fractional integrator circuit. Alex Eng J 60:3721–3729CrossRef Akgül A, Ahmad S, Ullah A, Baleanu D, Akgül EK (2021) A novel method for analysing the fractal fractional integrator circuit. Alex Eng J 60:3721–3729CrossRef
6.
Zurück zum Zitat Sabatelli L, Keating S, Dudley J, Richmond P (2002) Waiting time distributions in financial markets. Eur Phys J B 27:273–275MathSciNetCrossRef Sabatelli L, Keating S, Dudley J, Richmond P (2002) Waiting time distributions in financial markets. Eur Phys J B 27:273–275MathSciNetCrossRef
9.
Zurück zum Zitat Carr P, Wu L (2003) The finite moment log stable process and option pricing. J Finance 2:597–626 Carr P, Wu L (2003) The finite moment log stable process and option pricing. J Finance 2:597–626
10.
Zurück zum Zitat Song L, Wang W (2013) Solution of the fractional Black–Scholes option pricing model by difference method. Abstr Appl Anal 45:1–16MathSciNet Song L, Wang W (2013) Solution of the fractional Black–Scholes option pricing model by difference method. Abstr Appl Anal 45:1–16MathSciNet
11.
Zurück zum Zitat Elbeleze AA, Kiliman A, Taib BM (2013) Homotopy perturbation method for fractional Black-Scholes European option pricing equations using sumudu transform. Math Probl Eng 2013:524852MathSciNetMATHCrossRef Elbeleze AA, Kiliman A, Taib BM (2013) Homotopy perturbation method for fractional Black-Scholes European option pricing equations using sumudu transform. Math Probl Eng 2013:524852MathSciNetMATHCrossRef
12.
Zurück zum Zitat Hariharan G (2013) An efficient wavelet based approximation method to time fractional Black–Scholes European option pricing problem arising in nancial market. Appl Math Sci 69:3445–3456MathSciNet Hariharan G (2013) An efficient wavelet based approximation method to time fractional Black–Scholes European option pricing problem arising in nancial market. Appl Math Sci 69:3445–3456MathSciNet
13.
Zurück zum Zitat Chen W, Xu X, Zhu S (2014) Analytically pricing European-style options under the modified Black–Scholes equation with a spatial fractional derivative. Q Appl Math 72:597–611MathSciNetMATHCrossRef Chen W, Xu X, Zhu S (2014) Analytically pricing European-style options under the modified Black–Scholes equation with a spatial fractional derivative. Q Appl Math 72:597–611MathSciNetMATHCrossRef
14.
Zurück zum Zitat Chen W, Xu X, Zhu S (2015) Analytically pricing double barrier options based on a time-fractional Black–Scholes equation. Comput Math Appl 9:1407–1419MathSciNetMATHCrossRef Chen W, Xu X, Zhu S (2015) Analytically pricing double barrier options based on a time-fractional Black–Scholes equation. Comput Math Appl 9:1407–1419MathSciNetMATHCrossRef
15.
Zurück zum Zitat Wyss W (2000) The fractional Black–Scholes equation. Fract Calc Appl Anal Theory Appl 3:51–61MathSciNetMATH Wyss W (2000) The fractional Black–Scholes equation. Fract Calc Appl Anal Theory Appl 3:51–61MathSciNetMATH
16.
Zurück zum Zitat Cartea A, del-Castillo-Negrete D (2007) Fractional diffusion models of option prices in markets with jumps. Phys A 374(2):749–763CrossRef Cartea A, del-Castillo-Negrete D (2007) Fractional diffusion models of option prices in markets with jumps. Phys A 374(2):749–763CrossRef
17.
Zurück zum Zitat Jumarie G (2008) Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Insur Math Econ 1:271–287MATHCrossRef Jumarie G (2008) Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Insur Math Econ 1:271–287MATHCrossRef
18.
Zurück zum Zitat Jumarie G (2010) Derivation and solutions of some fractional Black Scholes equations in coarse-grained space and time, application to Merton’s optimal portfolio. Comput Math Appl 3:1142–1164MathSciNetMATHCrossRef Jumarie G (2010) Derivation and solutions of some fractional Black Scholes equations in coarse-grained space and time, application to Merton’s optimal portfolio. Comput Math Appl 3:1142–1164MathSciNetMATHCrossRef
19.
20.
Zurück zum Zitat Zhang H, Liu F, Turner I, Yang Q (2016) Numerical solution of the time fractional Black–Scholes model governing European options. Comput Math Appl 71:1772–1783MathSciNetMATHCrossRef Zhang H, Liu F, Turner I, Yang Q (2016) Numerical solution of the time fractional Black–Scholes model governing European options. Comput Math Appl 71:1772–1783MathSciNetMATHCrossRef
21.
Zurück zum Zitat Özdemira N, Yavuz M (2017) Numerical solution of fractional Black–Scholes equation by using the multivariate Padé approximation. Acta Phys Pol A 132:1050–1053CrossRef Özdemira N, Yavuz M (2017) Numerical solution of fractional Black–Scholes equation by using the multivariate Padé approximation. Acta Phys Pol A 132:1050–1053CrossRef
22.
Zurück zum Zitat Uddin M, Taufiq M (2019) Approximation of time fractional Black–Scholes equation via radial kernels and transformations. Fract Differ Calc 9:75–90MathSciNetMATH Uddin M, Taufiq M (2019) Approximation of time fractional Black–Scholes equation via radial kernels and transformations. Fract Differ Calc 9:75–90MathSciNetMATH
23.
Zurück zum Zitat Nualsaard N, Luadsong A, Aschariyaphotha N (2020) The numerical solution of fractional Black–Scholes–Schrodinger equation using the RBFs method. Adv Math Phys 1942762:1-17 Nualsaard N, Luadsong A, Aschariyaphotha N (2020) The numerical solution of fractional Black–Scholes–Schrodinger equation using the RBFs method. Adv Math Phys 1942762:1-17
24.
Zurück zum Zitat Saratha SR, Krishnan GSS, Bagyalakshmi M, Lim CP (2020) Solving Black–Scholes equations using fractional generalized homotopy analysis method. Comput Appl Math 39:262MathSciNetMATHCrossRef Saratha SR, Krishnan GSS, Bagyalakshmi M, Lim CP (2020) Solving Black–Scholes equations using fractional generalized homotopy analysis method. Comput Appl Math 39:262MathSciNetMATHCrossRef
25.
Zurück zum Zitat Al-Mdallal QM, Hajji MA (2015) A convergent algorithm for solving higher-order nonlinear fractional boundary value problems. Fract Cal Appl Anal 18:1423–1440MathSciNetMATHCrossRef Al-Mdallal QM, Hajji MA (2015) A convergent algorithm for solving higher-order nonlinear fractional boundary value problems. Fract Cal Appl Anal 18:1423–1440MathSciNetMATHCrossRef
26.
Zurück zum Zitat Abdeljawad T, Al-Mdallal QM, Jarad F (2019) Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Soliton Fractals 119:94–101MathSciNetMATHCrossRef Abdeljawad T, Al-Mdallal QM, Jarad F (2019) Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Soliton Fractals 119:94–101MathSciNetMATHCrossRef
27.
Zurück zum Zitat Nuugulu SM, Gideon F, Patidar KC (2021) A robust numerical solution to a time-fractional Black–Scholes equation. Adv Differ Equ 123:1–25MathSciNetMATH Nuugulu SM, Gideon F, Patidar KC (2021) A robust numerical solution to a time-fractional Black–Scholes equation. Adv Differ Equ 123:1–25MathSciNetMATH
28.
Zurück zum Zitat Akgül EK, Akgül A, Yavuz M (2021) New illustrative applications of integral transforms to financial methods with different fractional derivatives. Chaos Solitons Fractals 146:110877MATHCrossRef Akgül EK, Akgül A, Yavuz M (2021) New illustrative applications of integral transforms to financial methods with different fractional derivatives. Chaos Solitons Fractals 146:110877MATHCrossRef
29.
Zurück zum Zitat Akgül A (2018) A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114:478–482MathSciNetMATHCrossRef Akgül A (2018) A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114:478–482MathSciNetMATHCrossRef
30.
Zurück zum Zitat Aman S, Abdeljawad T, Al-Mdallal QM (2020) Natural convection flow of a fluid using Atangana and Baleanu fractional model. Adv Differ Equ 305:1–15MathSciNetMATH Aman S, Abdeljawad T, Al-Mdallal QM (2020) Natural convection flow of a fluid using Atangana and Baleanu fractional model. Adv Differ Equ 305:1–15MathSciNetMATH
31.
Zurück zum Zitat Abdeljawad T, Amin R, Shah K, Mdallal QM, Jarad F (2020) Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method. Alex Eng J 59:2391–2400CrossRef Abdeljawad T, Amin R, Shah K, Mdallal QM, Jarad F (2020) Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method. Alex Eng J 59:2391–2400CrossRef
32.
Zurück zum Zitat Al-Mdallal QM, Yusuf H, Ali A (2020) A novel algorithm for time-fractional foam drainage equation. Alex Eng J 59:1607–1612CrossRef Al-Mdallal QM, Yusuf H, Ali A (2020) A novel algorithm for time-fractional foam drainage equation. Alex Eng J 59:1607–1612CrossRef
33.
Zurück zum Zitat Mohyud-Din ST, Akram T, Abbas M, Ismail AI, Ali NM (2018) A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection–diffusion equation. Adv Differ Equ 109:17MathSciNetMATH Mohyud-Din ST, Akram T, Abbas M, Ismail AI, Ali NM (2018) A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection–diffusion equation. Adv Differ Equ 109:17MathSciNetMATH
34.
Zurück zum Zitat Akram T, Abbas M, Izani AI (2019) An extended cubic B-spline collocation scheme for time fractional sub-diffusion equation. AIP conference Proceedings 2184 Akram T, Abbas M, Izani AI (2019) An extended cubic B-spline collocation scheme for time fractional sub-diffusion equation. AIP conference Proceedings 2184
35.
Zurück zum Zitat Akram T, Abbas M, Ismail AI, Ali NM, Baleanu D (2019) Extended cubic B-splines in the numerical solution of time fractional telegraph equation. Adv Differ Equ 365:21MathSciNetMATH Akram T, Abbas M, Ismail AI, Ali NM, Baleanu D (2019) Extended cubic B-splines in the numerical solution of time fractional telegraph equation. Adv Differ Equ 365:21MathSciNetMATH
36.
Zurück zum Zitat Akram T, Abbas M, Iqbal A, Baleanu D, Asad J (2020) Novel numerical approach based on modified extended cubic B-spline functions for solving non-linear time-fractional telegraph equation. Symmetry 12:1154CrossRef Akram T, Abbas M, Iqbal A, Baleanu D, Asad J (2020) Novel numerical approach based on modified extended cubic B-spline functions for solving non-linear time-fractional telegraph equation. Symmetry 12:1154CrossRef
37.
Zurück zum Zitat Li X (2012) Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun Nonlinear Sci Num Simul 17(10):3934–3946MathSciNetMATHCrossRef Li X (2012) Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun Nonlinear Sci Num Simul 17(10):3934–3946MathSciNetMATHCrossRef
38.
Zurück zum Zitat Jafari H, Khalique M, Ramezani M, Tajadodi H (2013) Numerical solution of fractional differential equations by using fractional B-spline. Cent Eur J Phys 11(10):1372–1378 Jafari H, Khalique M, Ramezani M, Tajadodi H (2013) Numerical solution of fractional differential equations by using fractional B-spline. Cent Eur J Phys 11(10):1372–1378
39.
Zurück zum Zitat Akram T, Abbas M, Riaz MB, Ismail AI, Ali NM (2020) An efficient numerical technique for solving time fractional Burgers equation. Alex Eng J 59:2201–2220CrossRef Akram T, Abbas M, Riaz MB, Ismail AI, Ali NM (2020) An efficient numerical technique for solving time fractional Burgers equation. Alex Eng J 59:2201–2220CrossRef
40.
Zurück zum Zitat Akram T, Abbas M, Izani AI (2019) Numerical solution of fractional cable equation via extended cubic B-spline. AIP Conf Proc 2138(1):030004CrossRef Akram T, Abbas M, Izani AI (2019) Numerical solution of fractional cable equation via extended cubic B-spline. AIP Conf Proc 2138(1):030004CrossRef
41.
Zurück zum Zitat Akram T, Abbas M, Ali A (2020) A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation. J Math Comput Sci 22(1):85–96CrossRef Akram T, Abbas M, Ali A (2020) A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation. J Math Comput Sci 22(1):85–96CrossRef
42.
Zurück zum Zitat Jafari H, Tajadodi H (2018) New method for solving a class of fractional partial differential equations with applications. Therm Sci 22(1):5277–5286 Jafari H, Tajadodi H (2018) New method for solving a class of fractional partial differential equations with applications. Therm Sci 22(1):5277–5286
43.
Zurück zum Zitat Pitolli F (2020) On the numerical solution of fractional boundary value problems by a spline quasi-interpolant operator. Axioms 9:61CrossRef Pitolli F (2020) On the numerical solution of fractional boundary value problems by a spline quasi-interpolant operator. Axioms 9:61CrossRef
44.
Zurück zum Zitat Akram T, Abbas M, Ali A, Iqbal A, Baleanu D (2020) A numerical approach of a time fractional reaction–diffusion model with a non-singular kernel. Symmetry 12(10):1653CrossRef Akram T, Abbas M, Ali A, Iqbal A, Baleanu D (2020) A numerical approach of a time fractional reaction–diffusion model with a non-singular kernel. Symmetry 12(10):1653CrossRef
45.
Zurück zum Zitat Pitolli F (2018) Optimal B-spline bases for the numerical solutions of fractional differential problems. Axioms 7(3):46MATHCrossRef Pitolli F (2018) Optimal B-spline bases for the numerical solutions of fractional differential problems. Axioms 7(3):46MATHCrossRef
46.
Zurück zum Zitat Caputo M (1969) Elasticita e Dissipazione. Zanichelli Bolonga, Italy Caputo M (1969) Elasticita e Dissipazione. Zanichelli Bolonga, Italy
47.
Zurück zum Zitat Han LX, Liu SJ (2003) An extension of the cubic uniform B-spline curves. Comput Aided Des Comput Graph 15:576–578 Han LX, Liu SJ (2003) An extension of the cubic uniform B-spline curves. Comput Aided Des Comput Graph 15:576–578
48.
Zurück zum Zitat Holtte JM (2009) Discrete Gronwall lemma and applications. MAA-NCS meeting at the University of North Dakota 24 Holtte JM (2009) Discrete Gronwall lemma and applications. MAA-NCS meeting at the University of North Dakota 24
49.
Zurück zum Zitat Haq S, Hussain M (2018) Selection pf shape parameter in radial basis functions for solution of time-fractional Black–Scholes models. Appl Math Comput 335:248–263MathSciNetMATH Haq S, Hussain M (2018) Selection pf shape parameter in radial basis functions for solution of time-fractional Black–Scholes models. Appl Math Comput 335:248–263MathSciNetMATH
Metadaten
Titel
An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model
verfasst von
Tayyaba Akram
Muhammad Abbas
Khadijah M. Abualnaja
Azhar Iqbal
Abdul Majeed
Publikationsdatum
18.06.2021
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe Sonderheft 2/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01436-1

Weitere Artikel der Sonderheft 2/2022

Engineering with Computers 2/2022 Zur Ausgabe

Neuer Inhalt