Skip to main content
Erschienen in: Engineering with Computers 3/2020

15.03.2019 | Original Article

An efficient wavelet collocation method for nonlinear two-space dimensional Fisher–Kolmogorov–Petrovsky–Piscounov equation and two-space dimensional extended Fisher–Kolmogorov equation

verfasst von: Ömer Oruç

Erschienen in: Engineering with Computers | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we consider two-space dimensional nonlinear Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–KPP) equation and two-space dimensional nonlinear fourth-order extended Fisher–Kolmogorov (EFK) equation which have a lot of applications in different branches of science, especially in mathematical biology. We present a wavelet collocation method based on Chebyshev wavelets combined with two different time discretization schemes. To generate more accurate results for Fisher–KPP equation, in time variable discretization, forward Euler timestepping scheme along with Taylor series expansion is used. Resultant time-discretized scheme has second-order accuracy and includes second-order time derivative which is evaluated from governing equation. On the other hand for EFK equation forward Euler timestepping scheme with first-order accuracy is used. Then space variables situated in the semi-discrete schemes are discretized with Chebyshev wavelet series expansion. In this way a full discrete scheme is obtained. By this approach obtainment of numerical solution of considered partial differential equations is turned into an operation of finding solution of an algebraic system of equations. Actually the solution of the algebraic system of equations is wavelet coefficients in wavelet series expansion. Putting these coefficients into Chebyshev wavelet series expansion the numerical solution of considered partial differential equations can be obtained successively. The main objective of this paper is to demonstrate that Chebyshev wavelet-based method is accurate, efficient, and reliable for nonlinear two-space dimensional high-order partial differential equations. Six test problems are considered and \(L_2\), \(L_{\infty }\) error norms are calculated for comparison of our numerical results with exact results whenever they are available. Also numerical results are plotted for comparison with reference solutions. The obtained results certify the applicability and efficiency of the suggested method for Fisher–KPP and EFK equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zheng S (2004) Nonlinear evolution equations. Monographs and surveys in pure and applied mathematics. Chapman & Hall/CRC, CRC Press, Boca RatonMATH Zheng S (2004) Nonlinear evolution equations. Monographs and surveys in pure and applied mathematics. Chapman & Hall/CRC, CRC Press, Boca RatonMATH
2.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2018) Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/Gross–Pitaevskii equations via local Radial Basis Functions-Differential Quadrature (RBF-DQ) technique on non-rectangular computational domains. Eng Anal Bound Elements 92:156–170MathSciNetMATH Dehghan M, Abbaszadeh M (2018) Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/Gross–Pitaevskii equations via local Radial Basis Functions-Differential Quadrature (RBF-DQ) technique on non-rectangular computational domains. Eng Anal Bound Elements 92:156–170MathSciNetMATH
3.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) Numerical investigation based on direct meshless local Petrov Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross-Pitaevskii equation. Eng Comput 33(4):983–996 Dehghan M, Abbaszadeh M (2017) Numerical investigation based on direct meshless local Petrov Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross-Pitaevskii equation. Eng Comput 33(4):983–996
4.
Zurück zum Zitat Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):355–369MATH Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):355–369MATH
5.
Zurück zum Zitat Kolmogorov A, Petrovsky N, Piscounov S (1937) Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull Univ Moskou 1:1–25 Kolmogorov A, Petrovsky N, Piscounov S (1937) Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Bull Univ Moskou 1:1–25
6.
Zurück zum Zitat Roessler J, Hüssner H (1997) Numerical solution of the 1+ 2 dimensional Fisher’s equation by finite elements and the Galerkin method. Math Comput Modell 25:57–67MathSciNetMATH Roessler J, Hüssner H (1997) Numerical solution of the 1+ 2 dimensional Fisher’s equation by finite elements and the Galerkin method. Math Comput Modell 25:57–67MathSciNetMATH
7.
Zurück zum Zitat José C (1969) Diffusion in nonlinear multiplicative media. J Math Phys 10:1862–1868 José C (1969) Diffusion in nonlinear multiplicative media. J Math Phys 10:1862–1868
8.
Zurück zum Zitat Qin W, Ding D, Ding X (2015) Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation. Appl Math Comput 252:552–567MathSciNetMATH Qin W, Ding D, Ding X (2015) Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation. Appl Math Comput 252:552–567MathSciNetMATH
9.
Zurück zum Zitat Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150(1):5–19MathSciNetMATH Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150(1):5–19MathSciNetMATH
10.
Zurück zum Zitat Oruç Ö (2018) A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun Nonlinear Sci Numer Simul 57:14–25MathSciNet Oruç Ö (2018) A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun Nonlinear Sci Numer Simul 57:14–25MathSciNet
11.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) A local meshless method for solving multi-dimensional Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems arising in plasma physics. Eng Comput 33(4):961–981 Dehghan M, Abbaszadeh M (2017) A local meshless method for solving multi-dimensional Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems arising in plasma physics. Eng Comput 33(4):961–981
12.
Zurück zum Zitat Tang S, Qin S, Weber RO (1993) Numerical studies on 2-dimensional reaction–diffusion equations. J Aust Math Soc Sen B 35:223–243MathSciNetMATH Tang S, Qin S, Weber RO (1993) Numerical studies on 2-dimensional reaction–diffusion equations. J Aust Math Soc Sen B 35:223–243MathSciNetMATH
13.
Zurück zum Zitat Macias-Diaz JE (2011) A bounded finite-difference discretization of a two-dimensional diffusion equation with logistic nonlinear reaction. Int J Mod Phys C 22(09):953–966MathSciNetMATH Macias-Diaz JE (2011) A bounded finite-difference discretization of a two-dimensional diffusion equation with logistic nonlinear reaction. Int J Mod Phys C 22(09):953–966MathSciNetMATH
15.
Zurück zum Zitat Coullet P, Elphick C, Repaux D (1987) Nature of spatial chaos. Phys Rev Lett 58:431–434MathSciNet Coullet P, Elphick C, Repaux D (1987) Nature of spatial chaos. Phys Rev Lett 58:431–434MathSciNet
16.
Zurück zum Zitat Dee GT, van Saarloos W (1988) Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett 60:2641–2644 Dee GT, van Saarloos W (1988) Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett 60:2641–2644
17.
Zurück zum Zitat van Saarloos W (1987) Dynamical velocity selection: marginal stability. Phys Rev Lett 58:2571–2574 van Saarloos W (1987) Dynamical velocity selection: marginal stability. Phys Rev Lett 58:2571–2574
18.
Zurück zum Zitat van Saarloos W (1988) Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Phys Rev Lett A 37:211–229MathSciNet van Saarloos W (1988) Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Phys Rev Lett A 37:211–229MathSciNet
19.
Zurück zum Zitat Khiari N, Omrani K (2011) Finite difference discretization of the extended Fisher–Kolmogorov equation in two dimensions. Comput Math Appl 62:4151–4160MathSciNetMATH Khiari N, Omrani K (2011) Finite difference discretization of the extended Fisher–Kolmogorov equation in two dimensions. Comput Math Appl 62:4151–4160MathSciNetMATH
20.
Zurück zum Zitat Hornreich RM, Luban M, Shtrikman S (1975) Critical behaviour at the onset of k-space instability at the \(\lambda\) line. Phys Rev Lett 35:1678–1681 Hornreich RM, Luban M, Shtrikman S (1975) Critical behaviour at the onset of k-space instability at the \(\lambda\) line. Phys Rev Lett 35:1678–1681
21.
Zurück zum Zitat Ahlers G, Cannell DS (1983) Vortex-front propagation in rotating Couette–Taylor flow. Phys Rev Lett 50:1583–1586 Ahlers G, Cannell DS (1983) Vortex-front propagation in rotating Couette–Taylor flow. Phys Rev Lett 50:1583–1586
22.
Zurück zum Zitat Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population genetics. Adv Math 30:33–67MathSciNetMATH Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population genetics. Adv Math 30:33–67MathSciNetMATH
23.
Zurück zum Zitat Zhu G (1982) Experiments on director waves in nematic liquid crystals. Phys Rev Lett 49:1332–1335 Zhu G (1982) Experiments on director waves in nematic liquid crystals. Phys Rev Lett 49:1332–1335
24.
Zurück zum Zitat He D (2016) On the \(L^{\infty }\)-norm convergence of a three-level linearly implicit finite difference method for the extended Fisher–Kolmogorov equation in both 1D and 2D. Comput Math Appl 71(12):2594–2607MathSciNet He D (2016) On the \(L^{\infty }\)-norm convergence of a three-level linearly implicit finite difference method for the extended Fisher–Kolmogorov equation in both 1D and 2D. Comput Math Appl 71(12):2594–2607MathSciNet
26.
Zurück zum Zitat Liu F, Zhao X, Liu B (2017) Fourier pseudo-spectral method for the extended Fisher–Kolmogorov equation in two dimensions. Adv Differ Equ 2017:94MathSciNetMATH Liu F, Zhao X, Liu B (2017) Fourier pseudo-spectral method for the extended Fisher–Kolmogorov equation in two dimensions. Adv Differ Equ 2017:94MathSciNetMATH
27.
Zurück zum Zitat Ilati M, Dehghan M (2018) Direct local boundary integral equation method for numerical solution of extended Fisher–Kolmogorov equation. Eng Comput 34:203–213 Ilati M, Dehghan M (2018) Direct local boundary integral equation method for numerical solution of extended Fisher–Kolmogorov equation. Eng Comput 34:203–213
28.
Zurück zum Zitat Li X, Zhang L (2018) Error estimates of a trigonometric integrator sine pseudo-spectral method for the extended Fisher–Kolmogorov equation. Appl Numer Math 131:39–53MathSciNetMATH Li X, Zhang L (2018) Error estimates of a trigonometric integrator sine pseudo-spectral method for the extended Fisher–Kolmogorov equation. Appl Numer Math 131:39–53MathSciNetMATH
29.
Zurück zum Zitat Glowinski R, Lawton W, Ravachol M, Tenenbaum E (1990) Wavelet solutions of linear and non-linear elliptic, parabolic and hyperbolic problems in one space dimension. Comput Methods Appl Sci Eng SIAM Chap 4:55–120MATH Glowinski R, Lawton W, Ravachol M, Tenenbaum E (1990) Wavelet solutions of linear and non-linear elliptic, parabolic and hyperbolic problems in one space dimension. Comput Methods Appl Sci Eng SIAM Chap 4:55–120MATH
30.
Zurück zum Zitat Qian S, Weiss J (1993) Wavelets and the numerical solution of partial differential equations. J Comput Phys 106:155–175MathSciNetMATH Qian S, Weiss J (1993) Wavelets and the numerical solution of partial differential equations. J Comput Phys 106:155–175MathSciNetMATH
31.
Zurück zum Zitat Qian S, Weiss J (1993) Wavelets and the numerical solution of boundary value problems. Appl Math Lett 6:47–52MathSciNetMATH Qian S, Weiss J (1993) Wavelets and the numerical solution of boundary value problems. Appl Math Lett 6:47–52MathSciNetMATH
32.
Zurück zum Zitat Amaratunga A, Williams J, Qian S, Weiss J (1994) Wavelet Galerkin solutions for one-dimensional partial differential equations. Int J Numer Methods Eng 37:2703–2716MathSciNetMATH Amaratunga A, Williams J, Qian S, Weiss J (1994) Wavelet Galerkin solutions for one-dimensional partial differential equations. Int J Numer Methods Eng 37:2703–2716MathSciNetMATH
33.
Zurück zum Zitat Rathish Kumar BV, Mehra M (2005) Wavelet Taylor Galerkin method for the Burgers equation. BIT Numer Math Vol 45:543–560MathSciNetMATH Rathish Kumar BV, Mehra M (2005) Wavelet Taylor Galerkin method for the Burgers equation. BIT Numer Math Vol 45:543–560MathSciNetMATH
34.
Zurück zum Zitat Mehra M, Kumar BVR (2005) Time accurate solution of advection diffusion problems by wavelet Taylor Galerkin method. Commun Numer Methods Eng 21:313–326MathSciNetMATH Mehra M, Kumar BVR (2005) Time accurate solution of advection diffusion problems by wavelet Taylor Galerkin method. Commun Numer Methods Eng 21:313–326MathSciNetMATH
35.
Zurück zum Zitat Priyadarshi G, Kumar BVR (2018) Wavelet Galerkin schemes for higher order time dependent partial differential equations. Numer Methods Partial Differ Equ 34:982–1008MathSciNetMATH Priyadarshi G, Kumar BVR (2018) Wavelet Galerkin schemes for higher order time dependent partial differential equations. Numer Methods Partial Differ Equ 34:982–1008MathSciNetMATH
36.
Zurück zum Zitat Lepik Ü (2007) Application of the Haar wavelet transform to solving integral and differential equations. Proc Estonian Acad Sci Phys Math 56(1):28–46MathSciNetMATH Lepik Ü (2007) Application of the Haar wavelet transform to solving integral and differential equations. Proc Estonian Acad Sci Phys Math 56(1):28–46MathSciNetMATH
37.
Zurück zum Zitat Lepik Ü (2005) Numerical solution of differential equations using Haar wavelets. Math Comput Simul 68:127–143MathSciNetMATH Lepik Ü (2005) Numerical solution of differential equations using Haar wavelets. Math Comput Simul 68:127–143MathSciNetMATH
38.
Zurück zum Zitat Lepik Ü (2007) Numerical solution of evolution equations by the Haar wavelet method. Appl Math Comput 185:695–704MathSciNetMATH Lepik Ü (2007) Numerical solution of evolution equations by the Haar wavelet method. Appl Math Comput 185:695–704MathSciNetMATH
39.
Zurück zum Zitat Lepik Ü (2011) Solving PDEs with the aid of two-dimensional Haar wavelets. Comput Math Appl 61:1873–1879MathSciNetMATH Lepik Ü (2011) Solving PDEs with the aid of two-dimensional Haar wavelets. Comput Math Appl 61:1873–1879MathSciNetMATH
40.
Zurück zum Zitat Oruç Ö, Bulut F, Esen A (2015) A haar wavelet-finite difference hybrid method for the numerical solution of the modified burgers’ equation. J Math Chem 53(7):1592–1607MathSciNetMATH Oruç Ö, Bulut F, Esen A (2015) A haar wavelet-finite difference hybrid method for the numerical solution of the modified burgers’ equation. J Math Chem 53(7):1592–1607MathSciNetMATH
41.
Zurück zum Zitat Oruç Ö, Bulut F, Esen A (2016) Numerical solutions of regularized long wave equation by Haar wavelet method. Mediter J Math 13(5):3235–3253MathSciNetMATH Oruç Ö, Bulut F, Esen A (2016) Numerical solutions of regularized long wave equation by Haar wavelet method. Mediter J Math 13(5):3235–3253MathSciNetMATH
43.
Zurück zum Zitat Shi Z, Cao Y, Chen QJ (2012) Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method. Appl Math Model 36:5143–5161MathSciNetMATH Shi Z, Cao Y, Chen QJ (2012) Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method. Appl Math Model 36:5143–5161MathSciNetMATH
44.
Zurück zum Zitat Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput Phys Commun 188:59–67MathSciNetMATH Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput Phys Commun 188:59–67MathSciNetMATH
45.
Zurück zum Zitat Haq S, Ghafoor A (2018) An efficient numerical algorithm for multi-dimensional time dependent partial differential equations. Comput Math Appl 75(8):2723–2734MathSciNetMATH Haq S, Ghafoor A (2018) An efficient numerical algorithm for multi-dimensional time dependent partial differential equations. Comput Math Appl 75(8):2723–2734MathSciNetMATH
47.
Zurück zum Zitat Razzaghi M, Yousefi S (2000) Legendre wavelets direct method for variational problems. Math Comput Simul 53:185–192MathSciNet Razzaghi M, Yousefi S (2000) Legendre wavelets direct method for variational problems. Math Comput Simul 53:185–192MathSciNet
48.
Zurück zum Zitat Sahu PK, Saha Ray S (2015) Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system. Appl Math Comput 256:715–723MathSciNetMATH Sahu PK, Saha Ray S (2015) Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system. Appl Math Comput 256:715–723MathSciNetMATH
49.
Zurück zum Zitat Lakestani M, Saray BN, Dehghan M (2011) Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets. J Comput Appl Math 235(11):3291–3303MathSciNetMATH Lakestani M, Saray BN, Dehghan M (2011) Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets. J Comput Appl Math 235(11):3291–3303MathSciNetMATH
50.
Zurück zum Zitat Zhou F, Xu X (2016) Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets. Adv Differ Equ 2016:17MathSciNetMATH Zhou F, Xu X (2016) Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets. Adv Differ Equ 2016:17MathSciNetMATH
51.
Zurück zum Zitat Babolian E, Fattahzadeh F (2007) Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl Math Comput 188:417–426MathSciNetMATH Babolian E, Fattahzadeh F (2007) Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl Math Comput 188:417–426MathSciNetMATH
52.
Zurück zum Zitat Zhu L, Fan Q (2012) Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simul 17:2333–2341MathSciNetMATH Zhu L, Fan Q (2012) Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simul 17:2333–2341MathSciNetMATH
53.
Zurück zum Zitat Zhou F, Xu X (2014) Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets. Appl Math Comput 247:353–367MathSciNetMATH Zhou F, Xu X (2014) Numerical solution of the convection diffusion equations by the second kind Chebyshev wavelets. Appl Math Comput 247:353–367MathSciNetMATH
54.
Zurück zum Zitat Heydari MH, Hooshmandasl MR, Maalek Ghaini FM (2014) A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Appl Math Model 38:1597–1606MathSciNetMATH Heydari MH, Hooshmandasl MR, Maalek Ghaini FM (2014) A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Appl Math Model 38:1597–1606MathSciNetMATH
55.
Zurück zum Zitat Yang C, Hou J (2013) Chebyshev wavelets method for solving Bratu’s problem. Bound Value Probl 142:1–9MathSciNetMATH Yang C, Hou J (2013) Chebyshev wavelets method for solving Bratu’s problem. Bound Value Probl 142:1–9MathSciNetMATH
56.
Zurück zum Zitat Celik I (2018) Free vibration of non-uniform Euler–Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method Author links open overlay panel. Appl Math Modell 54:268–280MATH Celik I (2018) Free vibration of non-uniform Euler–Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method Author links open overlay panel. Appl Math Modell 54:268–280MATH
60.
Zurück zum Zitat Donea J (1984) A Taylor–Galerkin method for convective transport problems. Int J Numer Methods Eng 20:101–119MATH Donea J (1984) A Taylor–Galerkin method for convective transport problems. Int J Numer Methods Eng 20:101–119MATH
61.
Zurück zum Zitat Donea J, Giuliani S, Laval H (1984) Time-accurate solution of advection–diffusion problems by finite elements. Comput Methods Appl Mech Eng 45:123–146MathSciNetMATH Donea J, Giuliani S, Laval H (1984) Time-accurate solution of advection–diffusion problems by finite elements. Comput Methods Appl Mech Eng 45:123–146MathSciNetMATH
62.
Zurück zum Zitat Donea J, Quartapelle L, Selmin V (1987) An analysis of time discretization in finite element solution of hyperbolic problems. J Comput Phys 70:463–499MathSciNetMATH Donea J, Quartapelle L, Selmin V (1987) An analysis of time discretization in finite element solution of hyperbolic problems. J Comput Phys 70:463–499MathSciNetMATH
64.
Zurück zum Zitat Travis E (2007) Oliphant. Python Sci Comput Comput Sci Eng 9(3):10–20 Travis E (2007) Oliphant. Python Sci Comput Comput Sci Eng 9(3):10–20
65.
Zurück zum Zitat van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30 van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30
66.
Zurück zum Zitat Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95 Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95
67.
Zurück zum Zitat Alnaes MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEniCS Project Version 1.5, Archive of Numerical Software Alnaes MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEniCS Project Version 1.5, Archive of Numerical Software
68.
Zurück zum Zitat Logg A, Wells GN (2010) DOLFIN: automated finite element computing. ACM Trans Math Softw 37 Logg A, Wells GN (2010) DOLFIN: automated finite element computing. ACM Trans Math Softw 37
Metadaten
Titel
An efficient wavelet collocation method for nonlinear two-space dimensional Fisher–Kolmogorov–Petrovsky–Piscounov equation and two-space dimensional extended Fisher–Kolmogorov equation
verfasst von
Ömer Oruç
Publikationsdatum
15.03.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2020
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00734-z

Weitere Artikel der Ausgabe 3/2020

Engineering with Computers 3/2020 Zur Ausgabe

Neuer Inhalt