Skip to main content
Erschienen in: Electrical Engineering 3/2023

25.01.2023 | Original Paper

An energy-efficient CMOS interface circuit with maximum power point tracking and power management capabilities for self-powered sensor node applications using 50/60 Hz transmission line magnetic field harvesters

verfasst von: Mohammad Sajad Noohi, Mehdi Habibi

Erschienen in: Electrical Engineering | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an interface circuit for far-distance energy harvesting from magnetic field of overhead lines is presented. Due to the specific conditions of this type of energy harvesting, such as low available power, low induced voltage in the energy harvester coil, and change of energy harvester impedance, a direct AC/DC switching converter should be used. A maximum power point tracking solution is also necessary to guarantee impedance matching at different operation points. Since the harvested power is in the range of a hundred micro-watts, the power usage of the control circuitry is of significant importance and conventional design approaches based on microcontrollers and FPGAs which require ADCs, DACs and digital signal processing cannot be applied here. The proposed processing circuitry presented in this paper uses three feedback loops to perform the harvesting and energy transfer control. Only low-power comparators and basic digital gates are used as signal-processing elements to limit the power dissipation of the designed control blocks. The impedance matching inner loop samples the H-bridge voltage drop to extract the output load current and perform PWM impedance matching while transferring a rectified current to the output capacitor. Another inner feedback loop is used at the output capacitor using two-level comparison to regulate the output voltage. For maximum power point tracking an outer feedback loop samples the output voltage transfer rate and using a 50 Hz reference generator, adjusts the parameters of the impedance matching circuit of the first inner loop. With the proposed approach, in addition to converting the AC input power to a DC voltage, the output load is regulated at a fixed potential and using the MPPT control loop, the maximum power available from the coil is delivered to the output with relatively low dissipation. The proposed circuit is evaluated using a 0.18 μm standard CMOS technology and operates as a self-powered circuit without an external power source. Based on the obtained results, the efficiency of the proposed circuit at 119 µW input power is about 92.4%, and the MPPT efficiency is about 95%, which is suitable for low-power applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cansiz M (2020) Measurement and analysis of significant effects on charging times of radio frequency energy harvesting systems. Electr Eng 102(4):2521–2528CrossRef Cansiz M (2020) Measurement and analysis of significant effects on charging times of radio frequency energy harvesting systems. Electr Eng 102(4):2521–2528CrossRef
2.
Zurück zum Zitat Sucupira L, Castro-Gomes J (2021) Review of energy harvesting for buildings based on solar energy and thermal materials. CivilEng 2(4):852–873CrossRef Sucupira L, Castro-Gomes J (2021) Review of energy harvesting for buildings based on solar energy and thermal materials. CivilEng 2(4):852–873CrossRef
3.
Zurück zum Zitat Nurmanova V, Bagheri M, Phung T, Panda SK (2018) Feasibility study on wind energy harvesting system implementation in moving trains. Electr Eng 100(3):1837–1845CrossRef Nurmanova V, Bagheri M, Phung T, Panda SK (2018) Feasibility study on wind energy harvesting system implementation in moving trains. Electr Eng 100(3):1837–1845CrossRef
4.
Zurück zum Zitat Sezer N, Koç M (2021) A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80:105567CrossRef Sezer N, Koç M (2021) A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80:105567CrossRef
5.
Zurück zum Zitat Wang J, Geng L, Ding L, Zhu H, Yurchenko D (2020) The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl Energy 267:114902CrossRef Wang J, Geng L, Ding L, Zhu H, Yurchenko D (2020) The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl Energy 267:114902CrossRef
6.
Zurück zum Zitat Kumar S, Ansari M, Pandey S, Tripathi P, Singh M (2020) Weather monitoring system using smart sensors based on IoT, pp 351–363 Kumar S, Ansari M, Pandey S, Tripathi P, Singh M (2020) Weather monitoring system using smart sensors based on IoT, pp 351–363
7.
Zurück zum Zitat Wang Y, Huang Y, Song C (2019) A new smart sensing system using LoRaWAN for environmental monitoring, pp 347–351 Wang Y, Huang Y, Song C (2019) A new smart sensing system using LoRaWAN for environmental monitoring, pp 347–351
8.
Zurück zum Zitat Chen H, Qian Z, Liu C, Wu J, Li W, He X (2021) Time-multiplexed self-powered wireless current sensor for power transmission lines. Energies 14(6):1561CrossRef Chen H, Qian Z, Liu C, Wu J, Li W, He X (2021) Time-multiplexed self-powered wireless current sensor for power transmission lines. Energies 14(6):1561CrossRef
9.
Zurück zum Zitat Xu QR, Send R, Paprotny I, White RM, Wright PK (2013) Miniature self-powered stick-on wireless sensor node for monitoring of overhead power lines, pp 2672–2675 Xu QR, Send R, Paprotny I, White RM, Wright PK (2013) Miniature self-powered stick-on wireless sensor node for monitoring of overhead power lines, pp 2672–2675
10.
Zurück zum Zitat Beňa Ľ, Gáll V, Kanálik M et al (2021) Calculation of the overhead transmission line conductor temperature in real operating conditions. Electr Eng 103(2):769–780CrossRef Beňa Ľ, Gáll V, Kanálik M et al (2021) Calculation of the overhead transmission line conductor temperature in real operating conditions. Electr Eng 103(2):769–780CrossRef
11.
Zurück zum Zitat Lim T, Kim Y (2019) Compact self-powered wireless sensors for real-time monitoring of power lines. J Electr Eng Technol 14:1321–1326CrossRef Lim T, Kim Y (2019) Compact self-powered wireless sensors for real-time monitoring of power lines. J Electr Eng Technol 14:1321–1326CrossRef
12.
Zurück zum Zitat Tan C, Zhao Y, Tang Z (2020) Study on energy harvesting of open-close current transformer, pp 567–571 Tan C, Zhao Y, Tang Z (2020) Study on energy harvesting of open-close current transformer, pp 567–571
13.
Zurück zum Zitat Li P, Wen Y, Zhang Z, Pan S (2015) A high-efficiency management circuit using multiwinding upconversion current transformer for power-line energy harvesting. IEEE Trans Ind Electron 62(10):6327–6335CrossRef Li P, Wen Y, Zhang Z, Pan S (2015) A high-efficiency management circuit using multiwinding upconversion current transformer for power-line energy harvesting. IEEE Trans Ind Electron 62(10):6327–6335CrossRef
14.
Zurück zum Zitat Zhao X, Keutel T, Baldauf M, Kanoun O (2012) Energy harvesting for overhead power line monitoring, pp 1–5 Zhao X, Keutel T, Baldauf M, Kanoun O (2012) Energy harvesting for overhead power line monitoring, pp 1–5
15.
Zurück zum Zitat Yuan S, Huang Y, Zhou J, Xu Q, Song C, Thompson P (2015) Magnetic field energy harvesting under overhead power lines. IEEE Trans Power Electron 30(11):6191–6202CrossRef Yuan S, Huang Y, Zhou J, Xu Q, Song C, Thompson P (2015) Magnetic field energy harvesting under overhead power lines. IEEE Trans Power Electron 30(11):6191–6202CrossRef
16.
Zurück zum Zitat Tashiro K, Wakiwaka H, Inoue S, Uchiyama Y (2011) Energy harvesting of magnetic power-line noise. IEEE Trans Magn 47(10):4441–4444CrossRef Tashiro K, Wakiwaka H, Inoue S, Uchiyama Y (2011) Energy harvesting of magnetic power-line noise. IEEE Trans Magn 47(10):4441–4444CrossRef
17.
Zurück zum Zitat Gupta V, Kandhalu A, Rajkumar R (2010) Energy harvesting from electromagnetic energy radiating from AC power lines. Presented at: Proceedings of the 6th workshop on hot topics in embedded networked sensors, Killarney, Ireland Gupta V, Kandhalu A, Rajkumar R (2010) Energy harvesting from electromagnetic energy radiating from AC power lines. Presented at: Proceedings of the 6th workshop on hot topics in embedded networked sensors, Killarney, Ireland
18.
Zurück zum Zitat Kuang Y, Chew ZJ, Ruan T, Zhu M (2021) Magnetic field energy harvesting from current-carrying structures: electromagnetic-circuit coupled model, validation and application. IEEE Access 9:46280–46291CrossRef Kuang Y, Chew ZJ, Ruan T, Zhu M (2021) Magnetic field energy harvesting from current-carrying structures: electromagnetic-circuit coupled model, validation and application. IEEE Access 9:46280–46291CrossRef
19.
Zurück zum Zitat Chen J, Wang L (2016) Energy-adaptive signal processing under renewable energy. J Signal Process Syst 84(3):399–412CrossRef Chen J, Wang L (2016) Energy-adaptive signal processing under renewable energy. J Signal Process Syst 84(3):399–412CrossRef
20.
Zurück zum Zitat Leicht J, Maurath D, Manoli Y (2012) Autonomous and self-starting efficient micro energy harvesting interface with adaptive MPPT, buffer monitoring, and voltage stabilization, pp 101–104 Leicht J, Maurath D, Manoli Y (2012) Autonomous and self-starting efficient micro energy harvesting interface with adaptive MPPT, buffer monitoring, and voltage stabilization, pp 101–104
21.
Zurück zum Zitat Proynov PP, Szarka GD, Stark BH, McNeill N (2013) Resistive matching with a feed-forward controlled non-synchronous boost rectifier for electromagnetic energy harvesting, pp 3081–3086 Proynov PP, Szarka GD, Stark BH, McNeill N (2013) Resistive matching with a feed-forward controlled non-synchronous boost rectifier for electromagnetic energy harvesting, pp 3081–3086
22.
Zurück zum Zitat Maurath D, Becker PF, Spreemann D, Manoli Y (2012) Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking. IEEE J Solid-State Circuits 47(6):1369–1380CrossRef Maurath D, Becker PF, Spreemann D, Manoli Y (2012) Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking. IEEE J Solid-State Circuits 47(6):1369–1380CrossRef
23.
Zurück zum Zitat Darmayuda IM, Gao Y, Tan MT et al (2012) A self-powered power conditioning IC for piezoelectric energy harvesting from short-duration vibrations. IEEE Trans Circuits Syst II Express Briefs 59(9):578–582 Darmayuda IM, Gao Y, Tan MT et al (2012) A self-powered power conditioning IC for piezoelectric energy harvesting from short-duration vibrations. IEEE Trans Circuits Syst II Express Briefs 59(9):578–582
24.
Zurück zum Zitat Gao Y, Made DI, Cheng SJ, Je M, Heng CH (2013) An energy-autonomous piezoelectric energy harvester interface circuit with 0.3 V startup voltage, pp 445–448 Gao Y, Made DI, Cheng SJ, Je M, Heng CH (2013) An energy-autonomous piezoelectric energy harvester interface circuit with 0.3 V startup voltage, pp 445–448
25.
Zurück zum Zitat Leicht J, Manoli Y (2017) A 2.6 μW–1.2 mW autonomous electromagnetic vibration energy harvester interface IC with conduction-angle-controlled MPPT and up to 95% efficiency. IEEE J Solid-State Circuits 52(9):2448–2462CrossRef Leicht J, Manoli Y (2017) A 2.6 μW–1.2 mW autonomous electromagnetic vibration energy harvester interface IC with conduction-angle-controlled MPPT and up to 95% efficiency. IEEE J Solid-State Circuits 52(9):2448–2462CrossRef
26.
Zurück zum Zitat Peng Y, Choo DK, Oh S et al (2019) An adiabatic sense and set rectifier for improved maximum-power-point tracking in piezoelectric harvesting with 541% energy extraction gain, pp 422–424 Peng Y, Choo DK, Oh S et al (2019) An adiabatic sense and set rectifier for improved maximum-power-point tracking in piezoelectric harvesting with 541% energy extraction gain, pp 422–424
27.
Zurück zum Zitat Radhakrishna U, Riehl P, Desai N et al (2018) A low-power integrated power converter for an electromagnetic vibration energy harvester with 150 mV-AC cold startup, frequency tuning, and 50 Hz AC-to-DC conversion, pp 1–4 Radhakrishna U, Riehl P, Desai N et al (2018) A low-power integrated power converter for an electromagnetic vibration energy harvester with 150 mV-AC cold startup, frequency tuning, and 50 Hz AC-to-DC conversion, pp 1–4
28.
Zurück zum Zitat Wu L, Ha DS (2019) A self-powered piezoelectric energy harvesting circuit with an optimal flipping time SSHI and maximum power point tracking. IEEE Trans Circuits Syst II Express Briefs 66:1758–1762 Wu L, Ha DS (2019) A self-powered piezoelectric energy harvesting circuit with an optimal flipping time SSHI and maximum power point tracking. IEEE Trans Circuits Syst II Express Briefs 66:1758–1762
29.
Zurück zum Zitat Quelen A, Pillonnet G, Gasnier P, Rummens F, Boisseau S (2020) Electromagnetic mechanical energy-harvester IC with no off-chip component and one switching period MPPT achieving up to 95.9% end-to-end efficiency and 460% energy-extraction gain, pp 490–492 Quelen A, Pillonnet G, Gasnier P, Rummens F, Boisseau S (2020) Electromagnetic mechanical energy-harvester IC with no off-chip component and one switching period MPPT achieving up to 95.9% end-to-end efficiency and 460% energy-extraction gain, pp 490–492
31.
Zurück zum Zitat Tse KH, Chung HS (2020) MPPT for electromagnetic energy harvesters having nonnegligible output reactance operating under slow-varying conditions. IEEE Trans Power Electron 35(7):7110–7122CrossRef Tse KH, Chung HS (2020) MPPT for electromagnetic energy harvesters having nonnegligible output reactance operating under slow-varying conditions. IEEE Trans Power Electron 35(7):7110–7122CrossRef
32.
Zurück zum Zitat Bowden JA, Burrow SG, Cammarano A, Clare LR, Mitcheson PD (2015) Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters. IEEE/ASME Trans Mechatron 20(2):603–610CrossRef Bowden JA, Burrow SG, Cammarano A, Clare LR, Mitcheson PD (2015) Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters. IEEE/ASME Trans Mechatron 20(2):603–610CrossRef
33.
Zurück zum Zitat Xu W, Wang A, Lin S et al (2020) An internal-resistance-adaptive MPPT circuit for energy harvesting. AEU-Int J Electron C 127:153464CrossRef Xu W, Wang A, Lin S et al (2020) An internal-resistance-adaptive MPPT circuit for energy harvesting. AEU-Int J Electron C 127:153464CrossRef
34.
Zurück zum Zitat Fan S, Wei R, Zhao L, Yang X, Geng L, Feng PX (2018) An ultralow quiescent current power management system with maximum power point tracking (MPPT) for batteryless wireless sensor applications. IEEE Trans Power Electron 33(9):7326–7337CrossRef Fan S, Wei R, Zhao L, Yang X, Geng L, Feng PX (2018) An ultralow quiescent current power management system with maximum power point tracking (MPPT) for batteryless wireless sensor applications. IEEE Trans Power Electron 33(9):7326–7337CrossRef
35.
Zurück zum Zitat Luo Z, Zeng L, Lau B, Lian Y, Heng C (2018) A sub-10 mV power converter with fully integrated self-start, MPPT, and ZCS control for thermoelectric energy harvesting. IEEE Trans Circuits Syst I Regul Pap 65(5):1744–1757CrossRef Luo Z, Zeng L, Lau B, Lian Y, Heng C (2018) A sub-10 mV power converter with fully integrated self-start, MPPT, and ZCS control for thermoelectric energy harvesting. IEEE Trans Circuits Syst I Regul Pap 65(5):1744–1757CrossRef
36.
Zurück zum Zitat Chen Y, Guo J (2021) A 42nA, 1.5–6 V, self-regulated CMOS voltage reference with −93 dB PSR at 10 Hz for energy harvesting systems. IEEE Trans Circuits Syst II Express Briefs 68(7):2357–2361 Chen Y, Guo J (2021) A 42nA, 1.5–6 V, self-regulated CMOS voltage reference with −93 dB PSR at 10 Hz for energy harvesting systems. IEEE Trans Circuits Syst II Express Briefs 68(7):2357–2361
37.
Zurück zum Zitat Saini G, Baghini MS (2019) A generic power management circuit for energy harvesters with shared components between the MPPT and regulator. IEEE Trans Very Large Scale Integr (VLSI) Syst 27(3):535–548CrossRef Saini G, Baghini MS (2019) A generic power management circuit for energy harvesters with shared components between the MPPT and regulator. IEEE Trans Very Large Scale Integr (VLSI) Syst 27(3):535–548CrossRef
38.
Zurück zum Zitat Mondal S, Paily R (2017) Efficient solar power management system for self-powered IoT node. IEEE Trans Circuits Syst I Regul Pap 64(9):2359–2369CrossRef Mondal S, Paily R (2017) Efficient solar power management system for self-powered IoT node. IEEE Trans Circuits Syst I Regul Pap 64(9):2359–2369CrossRef
39.
Zurück zum Zitat Ashraf M, Masoumi N (2016) A thermal energy harvesting power supply with an internal startup circuit for pacemakers. IEEE Trans Very Large Scale Integr (VLSI) Syst 24(1):26–37CrossRef Ashraf M, Masoumi N (2016) A thermal energy harvesting power supply with an internal startup circuit for pacemakers. IEEE Trans Very Large Scale Integr (VLSI) Syst 24(1):26–37CrossRef
40.
Zurück zum Zitat Liu Q, Wu X, Zhao M, Wang L, Shen X (2012) 30–300mV input, ultra-low power, self-startup DC-DC boost converter for energy harvesting system, pp 432–435 Liu Q, Wu X, Zhao M, Wang L, Shen X (2012) 30–300mV input, ultra-low power, self-startup DC-DC boost converter for energy harvesting system, pp 432–435
41.
Zurück zum Zitat Chen S, Huang T, Ng SS et al (2016) A direct AC–DC and DC–DC cross-source energy harvesting circuit with analog iterating-based MPPT technique with 72.5% conversion efficiency and 94.6% tracking efficiency. IEEE Trans Power Electron 31(8):5885–5899CrossRef Chen S, Huang T, Ng SS et al (2016) A direct AC–DC and DC–DC cross-source energy harvesting circuit with analog iterating-based MPPT technique with 72.5% conversion efficiency and 94.6% tracking efficiency. IEEE Trans Power Electron 31(8):5885–5899CrossRef
Metadaten
Titel
An energy-efficient CMOS interface circuit with maximum power point tracking and power management capabilities for self-powered sensor node applications using 50/60 Hz transmission line magnetic field harvesters
verfasst von
Mohammad Sajad Noohi
Mehdi Habibi
Publikationsdatum
25.01.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 3/2023
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01740-7

Weitere Artikel der Ausgabe 3/2023

Electrical Engineering 3/2023 Zur Ausgabe