Skip to main content
Erschienen in: Engineering with Computers 5/2022

14.08.2021 | Original Article

An enhanced Cauchy mutation grasshopper optimization with trigonometric substitution: engineering design and feature selection

verfasst von: Songwei Zhao, Pengjun Wang, Ali Asghar Heidari, Xuehua Zhao, Chao Ma, Huiling Chen

Erschienen in: Engineering with Computers | Sonderheft 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selecting a subset of important features from a high-dimensional dataset is an important prerequisite for data mining. Meta-heuristic algorithms have gained attention in this field in recent years. The grasshopper optimization algorithm (GOA) is a meta-heuristic algorithm recently proposed based on the migration and hunting of grasshoppers in nature. However, the method suffers from a low diversity of the agents, which results in the stagnation problems, or immature convergence. To make GOA more competent in various situations, this paper stabilizes an improved GOA with new exploratory and exploitative features, which we have called it the SCGOA. The mechanism and structure of the proposed SCGOA are mainly divided into two steps: First, to balance the exploration and exploitation stages, trigonometric substitution is utilized for perturbation of the updating (evolution) of the position vectors of the individuals. Secondly, the diversity of the population is boosted using can Cauchy mutation-based strategy, which can help the grasshopper population to avoid the stagnation and lazy convergence. Therefore, Cauchy mutation is introduced to assist in an adequate variety of the position of the grasshopper population. Performance of SCGOA was validated on the latest IEEE CEC2017 benchmark functions in comparison with several well-known meta-heuristic algorithms. Various extensive results reveal that the proposed SCGOA has achieved a significant advantage over the other rivals. Finally, the Cauchy mutation-based SCGOA was also used for tackling four engineering design problems, and the results showed that SCGOA was superior to some state-of-the-art algorithms. We also developed the binary version of Cauchy mutation-based SCGOA in dealing with many feature selection datasets. The results on feature selection reveal that the binary version can outperform original GOA and other optimization algorithms, with higher classification accuracy, smaller error rate, and less number of features. We think the proposed optimizer can be widely tool for solving forms of the optimization problems. The research will be supported by open access materials and web service for any user guide at https://​aliasghaheidari.​com.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRef Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRef
2.
Zurück zum Zitat Shiming S et al (2021) Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns. Knowledge-Based Systems 215:106425CrossRef Shiming S et al (2021) Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns. Knowledge-Based Systems 215:106425CrossRef
3.
Zurück zum Zitat Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly Algorithm: Theory, Literature Review, and Application in Feature Selection. In: Mirjalili S, Song Dong J, Lewis A (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_4 Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly Algorithm: Theory, Literature Review, and Application in Feature Selection. In: Mirjalili S, Song Dong J, Lewis A (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-030-12127-3_​4
4.
Zurück zum Zitat Aljarah I, Mafarja M, Heidari AA, Faris H, Mirjalili S (2020) Multi-verse Optimizer: Theory, Literature Review, and Application in Data Clustering. In: Mirjalili S, Song Dong J, Lewis A (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_8 Aljarah I, Mafarja M, Heidari AA, Faris H, Mirjalili S (2020) Multi-verse Optimizer: Theory, Literature Review, and Application in Data Clustering. In: Mirjalili S, Song Dong J, Lewis A (eds) Nature-Inspired Optimizers. Studies in Computational Intelligence, vol 811. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-030-12127-3_​8
5.
Zurück zum Zitat Thaher T, Heidari AA, Mafarja M, Dong JS, Mirjalili S (2020) Binary Harris Hawks Optimizer for High-Dimensional, Low Sample Size Feature Selection. In: Mirjalili S., Faris H., Aljarah I. (eds) Evolutionary Machine Learning Techniques. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9990-0_12 Thaher T, Heidari AA, Mafarja M, Dong JS, Mirjalili S (2020) Binary Harris Hawks Optimizer for High-Dimensional, Low Sample Size Feature Selection. In: Mirjalili S., Faris H., Aljarah I. (eds) Evolutionary Machine Learning Techniques. Algorithms for Intelligent Systems. Springer, Singapore. https://​doi.​org/​10.​1007/​978-981-32-9990-0_​12
7.
Zurück zum Zitat Ridha HM, Gomes C, Hizam H, Ahmadipour M, Heidari AA, Chen H (2021) Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews, 135:110202 Ridha HM, Gomes C, Hizam H, Ahmadipour M, Heidari AA, Chen H (2021) Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews, 135:110202
11.
Zurück zum Zitat Zhang Y et al (2020) Enhancing MOEA/D with information feedback models for large-scale many-objective optimization. Inf Sci 522:1–16MathSciNetMATHCrossRef Zhang Y et al (2020) Enhancing MOEA/D with information feedback models for large-scale many-objective optimization. Inf Sci 522:1–16MathSciNetMATHCrossRef
12.
Zurück zum Zitat Gu Z-M, Wang G-G (2020) Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization. Futur Gener Comput Syst 107:49–69CrossRef Gu Z-M, Wang G-G (2020) Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization. Futur Gener Comput Syst 107:49–69CrossRef
13.
Zurück zum Zitat Yi J-H et al (2018) An improved NSGA-III Algorithm with adaptive mutation operator for big data optimization problems. Futur Gener Comput Syst 88:571–585CrossRef Yi J-H et al (2018) An improved NSGA-III Algorithm with adaptive mutation operator for big data optimization problems. Futur Gener Comput Syst 88:571–585CrossRef
15.
Zurück zum Zitat Tang C et al (2021) Teaching-learning-based pathfinder algorithm for function and engineering optimization problems. Appl Intell 51(7):5040–5066 Tang C et al (2021) Teaching-learning-based pathfinder algorithm for function and engineering optimization problems. Appl Intell 51(7):5040–5066
16.
Zurück zum Zitat Yu K et al (2020) Purpose-directed Two-phase multiobjective differential evolution for constrained multiobjective optimization. 100799 Yu K et al (2020) Purpose-directed Two-phase multiobjective differential evolution for constrained multiobjective optimization. 100799
17.
Zurück zum Zitat Yu K et al (2019) A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. 237: 241–257CrossRef Yu K et al (2019) A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. 237: 241–257CrossRef
18.
Zurück zum Zitat Ahanch M, Asasi MS, Amiri MS (2018) A Grasshopper Optimization Algorithm to solve optimal distribution system reconfiguration and distributed generation placement problem. In: 2017 IEEE 4th international conference on knowledge-based engineering and innovation, KBEI 2017 Ahanch M, Asasi MS, Amiri MS (2018) A Grasshopper Optimization Algorithm to solve optimal distribution system reconfiguration and distributed generation placement problem. In: 2017 IEEE 4th international conference on knowledge-based engineering and innovation, KBEI 2017
19.
Zurück zum Zitat Moayedi H, Hoang N, Foong LK (2021) Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput 37(2):1265–1275 Moayedi H, Hoang N, Foong LK (2021) Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput 37(2):1265–1275
21.
Zurück zum Zitat Omar AI et al (2019) An improved approach for robust control of dynamic voltage restorer and power quality enhancement using grasshopper optimization algorithm. ISA Trans 95:110–129 Omar AI et al (2019) An improved approach for robust control of dynamic voltage restorer and power quality enhancement using grasshopper optimization algorithm. ISA Trans 95:110–129
22.
Zurück zum Zitat Barman M, Dev Choudhury NB (2018) Hybrid GOA-SVR technique for short term load forecasting during periods with substantial weather changes in North-East India. Procedia Comput Sci 143:124–132 Barman M, Dev Choudhury NB (2018) Hybrid GOA-SVR technique for short term load forecasting during periods with substantial weather changes in North-East India. Procedia Comput Sci 143:124–132
23.
Zurück zum Zitat Ibrahim HT et al (2019) A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets. Neural Comput Appl 31(10):5965–5974CrossRef Ibrahim HT et al (2019) A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets. Neural Comput Appl 31(10):5965–5974CrossRef
24.
Zurück zum Zitat Singh G, Singh B, Kaur M (2019) Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals. Med Biol Eng Compu 57(6):1323–1339CrossRef Singh G, Singh B, Kaur M (2019) Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals. Med Biol Eng Compu 57(6):1323–1339CrossRef
25.
Zurück zum Zitat Vahidi J, Rahmati M (2019) Optimization of Resource allocation in cloud computing by grasshopper optimization algorithm. In: 2019 IEEE 5th conference on knowledge based engineering and innovation, KBEI 2019 Vahidi J, Rahmati M (2019) Optimization of Resource allocation in cloud computing by grasshopper optimization algorithm. In: 2019 IEEE 5th conference on knowledge based engineering and innovation, KBEI 2019
26.
Zurück zum Zitat Zakeri A, Hokmabadi A (2019) Efficient feature selection method using real-valued grasshopper optimization algorithm. Expert Syst Appl 119:61–72CrossRef Zakeri A, Hokmabadi A (2019) Efficient feature selection method using real-valued grasshopper optimization algorithm. Expert Syst Appl 119:61–72CrossRef
27.
Zurück zum Zitat Liang H et al (2019) Modified grasshopper algorithm-based multilevel thresholding for color image segmentation. IEEE Access 7:11258–11295CrossRef Liang H et al (2019) Modified grasshopper algorithm-based multilevel thresholding for color image segmentation. IEEE Access 7:11258–11295CrossRef
28.
Zurück zum Zitat Heidari AA et al (2019) An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput 23(17):7941–7958CrossRef Heidari AA et al (2019) An efficient hybrid multilayer perceptron neural network with grasshopper optimization. Soft Comput 23(17):7941–7958CrossRef
29.
Zurück zum Zitat Yue X, Zhang H (2020) Grasshopper optimization algorithm with principal component analysis for global optimization. J Supercomput 76(7):5609–5635 Yue X, Zhang H (2020) Grasshopper optimization algorithm with principal component analysis for global optimization. J Supercomput 76(7):5609–5635
30.
Zurück zum Zitat Jia H et al (2019) Hybrid grasshopper optimization algorithm and differential evolution for global optimization. J Intell Fuzzy Syst 37(5):6899–6910CrossRef Jia H et al (2019) Hybrid grasshopper optimization algorithm and differential evolution for global optimization. J Intell Fuzzy Syst 37(5):6899–6910CrossRef
31.
Zurück zum Zitat Mafarja M et al (2019) Binary grashopper optimisation algorithm approaches for feature selection problems. Expert Syst Appl 117:267–286CrossRef Mafarja M et al (2019) Binary grashopper optimisation algorithm approaches for feature selection problems. Expert Syst Appl 117:267–286CrossRef
32.
Zurück zum Zitat Wang G et al (2021) Chaotic arc adaptive grasshopper optimization. Ieee Access 9:17672–17706CrossRef Wang G et al (2021) Chaotic arc adaptive grasshopper optimization. Ieee Access 9:17672–17706CrossRef
33.
Zurück zum Zitat Arora S, Anand P (2018) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 1–21 Arora S, Anand P (2018) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 1–21
34.
Zurück zum Zitat Luo J et al (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64:654–668MathSciNetMATHCrossRef Luo J et al (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64:654–668MathSciNetMATHCrossRef
35.
Zurück zum Zitat Saxena A (2019) A comprehensive study of chaos embedded bridging mechanisms and crossover operators for grasshopper optimisation algorithm. Expert Syst Appl 132:166–188CrossRef Saxena A (2019) A comprehensive study of chaos embedded bridging mechanisms and crossover operators for grasshopper optimisation algorithm. Expert Syst Appl 132:166–188CrossRef
37.
Zurück zum Zitat Zhao R et al (2019) A dynamic weight grasshopper optimization algorithm with random jumping. In: Advances in intelligent systems and computing. 401–413 Zhao R et al (2019) A dynamic weight grasshopper optimization algorithm with random jumping. In: Advances in intelligent systems and computing. 401–413
38.
Zurück zum Zitat Zhou H et al (2020) An improved grasshopper optimizer for global tasks. Complexity Zhou H et al (2020) An improved grasshopper optimizer for global tasks. Complexity
39.
Zurück zum Zitat Bairathi D, Gopalani D (2020) An improved opposition based grasshopper optimisation algorithm for numerical optimization. In: Adv Intell Syst Comput 941:843–851 Bairathi D, Gopalani D (2020) An improved opposition based grasshopper optimisation algorithm for numerical optimization. In: Adv Intell Syst Comput 941:843–851
41.
Zurück zum Zitat Xu Z et al (2021) Spiral motion mode embedded grasshopper optimization algorithm: design and analysis. IEEE Access 9:71104–71132 Xu Z et al (2021) Spiral motion mode embedded grasshopper optimization algorithm: design and analysis. IEEE Access 9:71104–71132
42.
Zurück zum Zitat Wu G, Mallipeddi R, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization Wu G, Mallipeddi R, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization
43.
Zurück zum Zitat Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323CrossRef Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323CrossRef
44.
Zurück zum Zitat Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Future Generation Comput Syst Int J E Sci 97:849–872CrossRef Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Future Generation Comput Syst Int J E Sci 97:849–872CrossRef
46.
Zurück zum Zitat Ahmadianfar I et al (2021) RUN beyond the metaphor: an efficient optimization algorithm based on runge kutta method. Expert Syst Appl 115079 Ahmadianfar I et al (2021) RUN beyond the metaphor: an efficient optimization algorithm based on runge kutta method. Expert Syst Appl 115079
47.
Zurück zum Zitat Xu X, Chen H-L (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18(4):797–807CrossRef Xu X, Chen H-L (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18(4):797–807CrossRef
48.
Zurück zum Zitat Xu Y et al (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203MathSciNetCrossRef Xu Y et al (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203MathSciNetCrossRef
49.
Zurück zum Zitat Chen H et al (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur Gener Comput Syst 111:175–198CrossRef Chen H et al (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur Gener Comput Syst 111:175–198CrossRef
50.
Zurück zum Zitat Li L-M et al (2016) A novel real-coded population-based extremal optimization algorithm with polynomial mutation: a non-parametric statistical study on continuous optimization problems. Neurocomputing 174:577–587CrossRef Li L-M et al (2016) A novel real-coded population-based extremal optimization algorithm with polynomial mutation: a non-parametric statistical study on continuous optimization problems. Neurocomputing 174:577–587CrossRef
51.
Zurück zum Zitat Zeng G-Q et al (2016) An improved multi-objective population-based extremal optimization algorithm with polynomial mutation. Inf Sci 330:49–73CrossRef Zeng G-Q et al (2016) An improved multi-objective population-based extremal optimization algorithm with polynomial mutation. Inf Sci 330:49–73CrossRef
52.
Zurück zum Zitat Chen M-R, Zeng G-Q, Lu K-D (2019) A many-objective population extremal optimization algorithm with an adaptive hybrid mutation operation. Inf Sci 498:62–90MathSciNetMATHCrossRef Chen M-R, Zeng G-Q, Lu K-D (2019) A many-objective population extremal optimization algorithm with an adaptive hybrid mutation operation. Inf Sci 498:62–90MathSciNetMATHCrossRef
53.
Zurück zum Zitat Chen M-R et al (2019) An improved artificial bee colony algorithm combined with extremal optimization and Boltzmann Selection probability. Swarm Evol Comput 49:158–177CrossRef Chen M-R et al (2019) An improved artificial bee colony algorithm combined with extremal optimization and Boltzmann Selection probability. Swarm Evol Comput 49:158–177CrossRef
54.
Zurück zum Zitat Zhang Y et al (2020) Boosted binary Harris hawks optimizer and feature selection. Eng Comput 1–30 Zhang Y et al (2020) Boosted binary Harris hawks optimizer and feature selection. Eng Comput 1–30
55.
Zurück zum Zitat Hu J et al (2021) Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl-Based Syst 213:106684CrossRef Hu J et al (2021) Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl-Based Syst 213:106684CrossRef
56.
Zurück zum Zitat Zhang X et al (2020) Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Syst Appl 141:112976CrossRef Zhang X et al (2020) Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Syst Appl 141:112976CrossRef
58.
Zurück zum Zitat Liu T et al (2015) A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection. Int J Syst Sci 46(5):919–931MATHCrossRef Liu T et al (2015) A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection. Int J Syst Sci 46(5):919–931MATHCrossRef
59.
Zurück zum Zitat Zeng G-q, Lu Y-z, Mao W-JJJoZUSC (2011) Modified extremal optimization for the hard maximum satisfiability problem. J Zhejiang Univ Sci C 12(7):589–596 Zeng G-q, Lu Y-z, Mao W-JJJoZUSC (2011) Modified extremal optimization for the hard maximum satisfiability problem. J Zhejiang Univ Sci C 12(7):589–596
60.
Zurück zum Zitat Zeng G et al (2012) Backbone guided extremal optimization for the hard maximum satisfiability problem. Int J Innovative Comput Inform Control 8(12):8355–8366 Zeng G et al (2012) Backbone guided extremal optimization for the hard maximum satisfiability problem. Int J Innovative Comput Inform Control 8(12):8355–8366
61.
Zurück zum Zitat Chen M et al (2019) A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet Things J 6(4):6997–7010CrossRef Chen M et al (2019) A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet Things J 6(4):6997–7010CrossRef
62.
Zurück zum Zitat Gupta S et al (2019) Harmonized salp chain-built optimization. Eng Comput: 1–31 Gupta S et al (2019) Harmonized salp chain-built optimization. Eng Comput: 1–31
63.
Zurück zum Zitat Ba AF et al (2020) Levy-based antlion-inspired optimizers with orthogonal learning scheme. Eng Comput: 1–22 Ba AF et al (2020) Levy-based antlion-inspired optimizers with orthogonal learning scheme. Eng Comput: 1–22
64.
Zurück zum Zitat Zhang H et al (2020) A multi-strategy enhanced salp swarm algorithm for global optimization. Eng Comput: 1–27 Zhang H et al (2020) A multi-strategy enhanced salp swarm algorithm for global optimization. Eng Comput: 1–27
65.
Zurück zum Zitat Liang X et al (2020) Chaotic oppositional sine–cosine method for solving global optimization problems. Eng Comput: 1–17 Liang X et al (2020) Chaotic oppositional sine–cosine method for solving global optimization problems. Eng Comput: 1–17
66.
Zurück zum Zitat Yu H et al (2020) Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Eng Comput: 1–29 Yu H et al (2020) Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Eng Comput: 1–29
67.
Zurück zum Zitat Nautiyal B et al (2021) Improved Salp Swarm Algorithm with mutation schemes for solving global optimization and engineering problems. Eng Comput: 1–23 Nautiyal B et al (2021) Improved Salp Swarm Algorithm with mutation schemes for solving global optimization and engineering problems. Eng Comput: 1–23
68.
Zurück zum Zitat Hu L et al (2017) A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices. PLoS ONE 12(10):e0186427CrossRef Hu L et al (2017) A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices. PLoS ONE 12(10):e0186427CrossRef
69.
Zurück zum Zitat Li C et al (2018) Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput Methods Programs Biomed 153:211–225CrossRef Li C et al (2018) Developing a new intelligent system for the diagnosis of tuberculous pleural effusion. Comput Methods Programs Biomed 153:211–225CrossRef
70.
Zurück zum Zitat Zhao X et al (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490CrossRef Zhao X et al (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490CrossRef
71.
Zurück zum Zitat Huang H et al (2019) A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC Bioinformatics 20(8):1–14 Huang H et al (2019) A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC Bioinformatics 20(8):1–14
73.
Zurück zum Zitat Cai Z et al (2019) Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst Appl 138:112814CrossRef Cai Z et al (2019) Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy. Expert Syst Appl 138:112814CrossRef
74.
Zurück zum Zitat Xu Y et al (2019) An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Syst Appl 129:135–155CrossRef Xu Y et al (2019) An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Syst Appl 129:135–155CrossRef
75.
Zurück zum Zitat Wang M et al (2017) Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction. Eng Appl Artif Intell 63:54–68CrossRef Wang M et al (2017) Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction. Eng Appl Artif Intell 63:54–68CrossRef
76.
Zurück zum Zitat Zeng G-Q et al (2014) Binary-coded extremal optimization for the design of PID controllers. Neurocomputing 138:180–188CrossRef Zeng G-Q et al (2014) Binary-coded extremal optimization for the design of PID controllers. Neurocomputing 138:180–188CrossRef
77.
Zurück zum Zitat Zeng G-Q et al (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184CrossRef Zeng G-Q et al (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184CrossRef
78.
Zurück zum Zitat Zeng G-Q et al (2019) Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems. Swarm Evol Comput 44:320–334CrossRef Zeng G-Q et al (2019) Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems. Swarm Evol Comput 44:320–334CrossRef
80.
Zurück zum Zitat Deng W et al (2020) An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application. Int J Bio-Inspired Comput 16(3):158–170CrossRef Deng W et al (2020) An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application. Int J Bio-Inspired Comput 16(3):158–170CrossRef
81.
Zurück zum Zitat Heidari AA, Abbaspour RA, Chen H (2019) Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Appl Soft Comput 81:105521CrossRef Heidari AA, Abbaspour RA, Chen H (2019) Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Appl Soft Comput 81:105521CrossRef
82.
Zurück zum Zitat Shen L et al (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75CrossRef Shen L et al (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75CrossRef
83.
Zurück zum Zitat Wang M et al (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84CrossRef Wang M et al (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84CrossRef
89.
Zurück zum Zitat Zhao X et al (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596CrossRef Zhao X et al (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596CrossRef
90.
Zurück zum Zitat Zhao X et al (2015) A two-stage feature selection method with its application. Comput Electr Eng 47:114–125CrossRef Zhao X et al (2015) A two-stage feature selection method with its application. Comput Electr Eng 47:114–125CrossRef
91.
Zurück zum Zitat Wei Y et al (2020) Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone Harris hawks optimizer. IEEE Access 8:76841–76855CrossRef Wei Y et al (2020) Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone Harris hawks optimizer. IEEE Access 8:76841–76855CrossRef
92.
Zurück zum Zitat Zhu W et al (2020) Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. IEEE Access 8:61107–61123CrossRef Zhu W et al (2020) Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. IEEE Access 8:61107–61123CrossRef
93.
Zurück zum Zitat Lin A et al (2019) Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. Ieee Access 7:67235–67248CrossRef Lin A et al (2019) Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. Ieee Access 7:67235–67248CrossRef
94.
Zurück zum Zitat Tu J et al (2019) Predict the entrepreneurial intention of fresh graduate students based on an adaptive support vector machine framework. Math Probl Eng 2019:1–16 Tu J et al (2019) Predict the entrepreneurial intention of fresh graduate students based on an adaptive support vector machine framework. Math Probl Eng 2019:1–16
95.
Zurück zum Zitat Wei Y et al (2017) An improved grey wolf optimization strategy enhanced SVM and its application in predicting the second major. Math Probl Eng 2017:1–12CrossRef Wei Y et al (2017) An improved grey wolf optimization strategy enhanced SVM and its application in predicting the second major. Math Probl Eng 2017:1–12CrossRef
96.
Zurück zum Zitat Pang J et al (2018) A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing. Comput Ind Eng 123:54–66CrossRef Pang J et al (2018) A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing. Comput Ind Eng 123:54–66CrossRef
97.
Zurück zum Zitat Zhou H et al (2018) A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes. Comput Ind Eng 123:67–81CrossRef Zhou H et al (2018) A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes. Comput Ind Eng 123:67–81CrossRef
98.
Zurück zum Zitat Xu Z, Gui W, Heidari AA, Liang G, Chen H, Wu C et al (2021) Spiral motion mode embedded grasshopper optimization algorithm: design and analysis. IEEE Access 9:71104–71132 Xu Z, Gui W, Heidari AA, Liang G, Chen H, Wu C et al (2021) Spiral motion mode embedded grasshopper optimization algorithm: design and analysis. IEEE Access 9:71104–71132
99.
Zurück zum Zitat Xu Z, Hu Z, Heidari AA, Wang M, Zhao X, Chen H, Cai X (2020) Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis. Expert Syst Appl 150:113282 Xu Z, Hu Z, Heidari AA, Wang M, Zhao X, Chen H, Cai X (2020) Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis. Expert Syst Appl 150:113282
100.
Zurück zum Zitat Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Ala’M AZ, Mirjalili S (2018) Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems 145:25–45 Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Ala’M AZ, Mirjalili S (2018) Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems 145:25–45
101.
Zurück zum Zitat Wang X, Chen H, Heidari AA, Zhang X, Xu J, Xu Y, Huang H (2020) Multi-population following behavior-driven fruit fly optimization: A Markov chain convergence proof and comprehensive analysis. Knowl-Based Syst 210:106437 Wang X, Chen H, Heidari AA, Zhang X, Xu J, Xu Y, Huang H (2020) Multi-population following behavior-driven fruit fly optimization: A Markov chain convergence proof and comprehensive analysis. Knowl-Based Syst 210:106437
102.
Zurück zum Zitat Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRef
103.
Zurück zum Zitat Zhang Q et al (2019) Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers IEEE. Access 7:31243–31261CrossRef Zhang Q et al (2019) Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers IEEE. Access 7:31243–31261CrossRef
104.
Zurück zum Zitat Paiva FAP et al (2018) Modified bat algorithm with cauchy mutation and elite opposition-based learning. In: 2017 IEEE latin american conference on computational intelligence, LA-CCI 2017—Proceedings Paiva FAP et al (2018) Modified bat algorithm with cauchy mutation and elite opposition-based learning. In: 2017 IEEE latin american conference on computational intelligence, LA-CCI 2017—Proceedings
105.
Zurück zum Zitat Li C et al (2017) Design of a fractional-order PID controller for a pumped storage unit using a gravitational search algorithm based on the Cauchy and Gaussian mutation. Inf Sci 396:162–181CrossRef Li C et al (2017) Design of a fractional-order PID controller for a pumped storage unit using a gravitational search algorithm based on the Cauchy and Gaussian mutation. Inf Sci 396:162–181CrossRef
106.
Zurück zum Zitat Wu Q (2011) Hybrid forecasting model based on support vector machine and particle swarm optimization with adaptive and Cauchy mutation. Expert Syst Appl 38(8):9070–9075CrossRef Wu Q (2011) Hybrid forecasting model based on support vector machine and particle swarm optimization with adaptive and Cauchy mutation. Expert Syst Appl 38(8):9070–9075CrossRef
107.
Zurück zum Zitat Wang H et al (2007) Opposition-based particle swarm algorithm with Cauchy mutation. In: 2007 IEEE congress on evolutionary computation, CEC 2007 Wang H et al (2007) Opposition-based particle swarm algorithm with Cauchy mutation. In: 2007 IEEE congress on evolutionary computation, CEC 2007
108.
Zurück zum Zitat Alcalá-Fdez J et al (2009) KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307–318CrossRef Alcalá-Fdez J et al (2009) KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3):307–318CrossRef
109.
Zurück zum Zitat Cheng S et al (2014) Population Diversity Maintenance In Brain Storm Optimization Algorithm. J Artificial Intell Soft Comput Res 4(2):83–97 Cheng S et al (2014) Population Diversity Maintenance In Brain Storm Optimization Algorithm. J Artificial Intell Soft Comput Res 4(2):83–97
110.
Zurück zum Zitat Nenavath H, Jatoth RK (2018) Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comp J 62:1019–1043CrossRef Nenavath H, Jatoth RK (2018) Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comp J 62:1019–1043CrossRef
111.
Zurück zum Zitat Jia H et al (2019) Hybrid grasshopper optimization algorithm and differential evolution for multilevel satellite image segmentation. Remote Sens 11(9):1134 Jia H et al (2019) Hybrid grasshopper optimization algorithm and differential evolution for multilevel satellite image segmentation. Remote Sens 11(9):1134
112.
Zurück zum Zitat Heidari A et al (2019) An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput Appl 32(9):5185–5211 Heidari A et al (2019) An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput Appl 32(9):5185–5211
113.
Zurück zum Zitat Ewee AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172CrossRef Ewee AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172CrossRef
114.
Zurück zum Zitat Cao Y et al (2019) Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans Evol Comput 23(4):718–731CrossRef Cao Y et al (2019) Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans Evol Comput 23(4):718–731CrossRef
115.
Zurück zum Zitat Ling Y, Zhou Y, Luo Q (2017) Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 5:6168–6186CrossRef Ling Y, Zhou Y, Luo Q (2017) Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 5:6168–6186CrossRef
116.
Zurück zum Zitat Kumar N et al (2017) Single sensor-based MPPT of partially shaded PV system for battery charging by using cauchy and gaussian sine cosine optimization. IEEE Trans Energy Convers 32(3):983–992CrossRef Kumar N et al (2017) Single sensor-based MPPT of partially shaded PV system for battery charging by using cauchy and gaussian sine cosine optimization. IEEE Trans Energy Convers 32(3):983–992CrossRef
117.
Zurück zum Zitat Chen X, Xu B, Du W (2018) An improved particle swarm optimization with biogeography-based learning strategy for economic dispatch problems. Complexity 2018 Chen X, Xu B, Du W (2018) An improved particle swarm optimization with biogeography-based learning strategy for economic dispatch problems. Complexity 2018
118.
Zurück zum Zitat Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230CrossRef Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230CrossRef
119.
Zurück zum Zitat Tubishat M et al (2019) Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl Intell 49(5):1688–1707CrossRef Tubishat M et al (2019) Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl Intell 49(5):1688–1707CrossRef
120.
Zurück zum Zitat Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNetMATHCrossRef Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNetMATHCrossRef
121.
Zurück zum Zitat Mirjalili S et al (2020) Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters, in Studies in Computational Intelligence 219–238 Mirjalili S et al (2020) Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters, in Studies in Computational Intelligence 219–238
122.
Zurück zum Zitat Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: Proceedings—international conference on computational intelligence for modelling, control and automation, CIMCA 2005 and international conference on intelligent agents, web technologies and internet Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: Proceedings—international conference on computational intelligence for modelling, control and automation, CIMCA 2005 and international conference on intelligent agents, web technologies and internet
123.
Zurück zum Zitat Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks—onference proceedings Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks—onference proceedings
124.
Zurück zum Zitat Kamaruzaman AF et al (2013) Levy flight algorithm for optimization problems—a literature review. In: Appl Mech Materials. 496–501 Kamaruzaman AF et al (2013) Levy flight algorithm for optimization problems—a literature review. In: Appl Mech Materials. 496–501
125.
Zurück zum Zitat Zhou X, Wu Z, Wang H (2012) Elite opposition-based differential evolution for solving large-scale optimization problems and its implementation on GPU. In: Parallel and distributed computing, applications and technologies, PDCAT proceedings. Zhou X, Wu Z, Wang H (2012) Elite opposition-based differential evolution for solving large-scale optimization problems and its implementation on GPU. In: Parallel and distributed computing, applications and technologies, PDCAT proceedings.
126.
Zurück zum Zitat Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287MathSciNetMATHCrossRef Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287MathSciNetMATHCrossRef
128.
Zurück zum Zitat Dhiman G, Kaur A (2018) Spotted Hyena Optimizer for Solving Engineering Design Problems Dhiman G, Kaur A (2018) Spotted Hyena Optimizer for Solving Engineering Design Problems
129.
Zurück zum Zitat Eskandar H et al (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166CrossRef Eskandar H et al (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166CrossRef
130.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
131.
Zurück zum Zitat Yang XS (2010) A new metaheuristic Bat-inspired algorithm. In: Stud Comput Intell 65–74 Yang XS (2010) A new metaheuristic Bat-inspired algorithm. In: Stud Comput Intell 65–74
132.
Zurück zum Zitat He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99CrossRef He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99CrossRef
133.
Zurück zum Zitat Coello Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127MATHCrossRef Coello Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127MATHCrossRef
134.
Zurück zum Zitat Fortini P, Barakat R (1981) An algorithm for gene frequency changes for linked autosomal loci based on genetic algebras. J Math Anal Appl 83(1):135–143MathSciNetMATHCrossRef Fortini P, Barakat R (1981) An algorithm for gene frequency changes for linked autosomal loci based on genetic algebras. J Math Anal Appl 83(1):135–143MathSciNetMATHCrossRef
135.
Zurück zum Zitat Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294CrossRef Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294CrossRef
136.
Zurück zum Zitat Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetMATH Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579MathSciNetMATH
137.
Zurück zum Zitat Arora J (2012) Introduction to Optimum Design. Introduction to Optimum Design Arora J (2012) Introduction to Optimum Design. Introduction to Optimum Design
138.
Zurück zum Zitat Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Methods Eng 21(9):1583–1599MathSciNetMATHCrossRef Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Methods Eng 21(9):1583–1599MathSciNetMATHCrossRef
139.
Zurück zum Zitat Zhang Q et al (2019) Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers. IEEE Access 7:31243–31261CrossRef Zhang Q et al (2019) Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers. IEEE Access 7:31243–31261CrossRef
140.
141.
Zurück zum Zitat Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Manuf Sci E T ASME 98(3):1021–1025 Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Manuf Sci E T ASME 98(3):1021–1025
142.
Zurück zum Zitat Chen H et al (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetMATHCrossRef Chen H et al (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetMATHCrossRef
143.
Zurück zum Zitat Kannan BK, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Design Trans ASME 116(2):405–411CrossRef Kannan BK, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Design Trans ASME 116(2):405–411CrossRef
144.
Zurück zum Zitat Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473MathSciNetMATHCrossRef Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473MathSciNetMATHCrossRef
145.
Zurück zum Zitat Wang GG (2003) Adaptive response surface method using inherited Latin hypercube design points. J Mech Design Trans ASME 125(2):210–220CrossRef Wang GG (2003) Adaptive response surface method using inherited Latin hypercube design points. J Mech Design Trans ASME 125(2):210–220CrossRef
147.
Zurück zum Zitat Alweshah M (2020) Solving feature selection problems by combining mutation and crossover operations with the monarch butterfly optimization algorithm. Appl Intell Alweshah M (2020) Solving feature selection problems by combining mutation and crossover operations with the monarch butterfly optimization algorithm. Appl Intell
148.
Zurück zum Zitat Mohammed TA et al (2020) Hybrid efficient genetic algorithm for big data feature selection problems. Found Sci 25(4):1009–1025MathSciNetCrossRef Mohammed TA et al (2020) Hybrid efficient genetic algorithm for big data feature selection problems. Found Sci 25(4):1009–1025MathSciNetCrossRef
149.
Zurück zum Zitat Gomathy M (2021) Optimal feature selection for speech emotion recognition using enhanced cat swarm optimization algorithm. Int J Speech Technol 24(1):155–163CrossRef Gomathy M (2021) Optimal feature selection for speech emotion recognition using enhanced cat swarm optimization algorithm. Int J Speech Technol 24(1):155–163CrossRef
150.
Zurück zum Zitat Shekhawat SS et al (2021) bSSA: binary Salp swarm algorithm with hybrid data transformation for feature selection. Ieee Access 9:14867–14882MathSciNetCrossRef Shekhawat SS et al (2021) bSSA: binary Salp swarm algorithm with hybrid data transformation for feature selection. Ieee Access 9:14867–14882MathSciNetCrossRef
151.
Zurück zum Zitat Al-Thanoon NA, Qasim OS, Algamal ZY (2021) Improving nature-inspired algorithms for feature selection. J Ambient Intell Human Computs, 2021 Al-Thanoon NA, Qasim OS, Algamal ZY (2021) Improving nature-inspired algorithms for feature selection. J Ambient Intell Human Computs, 2021
154.
Zurück zum Zitat Kahya MA, Altamir SA, Algamal ZY (2021) Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numer Algebra Control Opt 11(1):87–98MathSciNetMATHCrossRef Kahya MA, Altamir SA, Algamal ZY (2021) Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numer Algebra Control Opt 11(1):87–98MathSciNetMATHCrossRef
156.
Zurück zum Zitat Ismael OM, Qasim OS, Algamal ZY (2020) Improving Harris hawks optimization algorithm for hyperparameters estimation and feature selection in v-support vector regression based on opposition-based learning. J Chemometrics 34(11) Ismael OM, Qasim OS, Algamal ZY (2020) Improving Harris hawks optimization algorithm for hyperparameters estimation and feature selection in v-support vector regression based on opposition-based learning. J Chemometrics 34(11)
157.
Zurück zum Zitat Allam M, Malaiyappan N (2020) Wrapper based feature selection using integrative teaching learning based optimization algorithm. Int Arab J Inform Technol 17(6):885–894CrossRef Allam M, Malaiyappan N (2020) Wrapper based feature selection using integrative teaching learning based optimization algorithm. Int Arab J Inform Technol 17(6):885–894CrossRef
158.
Zurück zum Zitat Khaire UM, Dhanalakshmi R (2020) Stability investigation of improved whale optimization algorithm in the process of feature selection. Iete Technical Review Khaire UM, Dhanalakshmi R (2020) Stability investigation of improved whale optimization algorithm in the process of feature selection. Iete Technical Review
159.
Zurück zum Zitat Ouadfel S, Abd Elaziz M (2020) Enhanced crow search algorithm for feature selection. Expert Syst Appl 159 Ouadfel S, Abd Elaziz M (2020) Enhanced crow search algorithm for feature selection. Expert Syst Appl 159
160.
Zurück zum Zitat Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381CrossRef Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381CrossRef
161.
Zurück zum Zitat Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14CrossRef Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14CrossRef
162.
Zurück zum Zitat Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRef Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191CrossRef
163.
Zurück zum Zitat Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: 2017 IEEE 8th international conference on intelligent computing and information systems, ICICIS 2017 Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: 2017 IEEE 8th international conference on intelligent computing and information systems, ICICIS 2017
164.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Yang XS (2014) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681CrossRef Mirjalili S, Mirjalili SM, Yang XS (2014) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681CrossRef
Metadaten
Titel
An enhanced Cauchy mutation grasshopper optimization with trigonometric substitution: engineering design and feature selection
verfasst von
Songwei Zhao
Pengjun Wang
Ali Asghar Heidari
Xuehua Zhao
Chao Ma
Huiling Chen
Publikationsdatum
14.08.2021
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe Sonderheft 5/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01448-x

Weitere Artikel der Sonderheft 5/2022

Engineering with Computers 5/2022 Zur Ausgabe

Neuer Inhalt