Skip to main content
Erschienen in: Calcolo 3/2017

01.09.2017

An extended Hamiltonian QR algorithm

verfasst von: Micol Ferranti, Bruno Iannazzo, Thomas Mach, Raf Vandebril

Erschienen in: Calcolo | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An extended QR algorithm specifically tailored for Hamiltonian matrices is presented. The algorithm generalizes the customary Hamiltonian QR algorithm with additional freedom in choosing between various possible extended Hamiltonian Hessenberg forms. We introduced in Ferranti et al. (Calcolo, 2015. doi:10.​1007/​s10092-016-0192-1) an algorithm to transform certain Hamiltonian matrices to such forms. Whereas the convergence of the classical QR algorithm is related to classical Krylov subspaces, convergence in the extended case links to extended Krylov subspaces, resulting in a greater flexibility, and possible enhanced convergence behavior. Details on the implementation, covering the bidirectional chasing and the bulge exchange based on rotations are presented. The numerical experiments reveal that the convergence depends on the selected extended forms and illustrate the validity of the approach.
Fußnoten
1
CMV matrices are already around for a long time, e.g., [20, 33], but they acquired their name recently from the initials Cantero, Moral, and Velazquez [13].
 
2
In [15] also another type of factorization, the ascending type, is presented, where essentially the two outer matrices of (2.1) are swapped. The algorithm described in this article works also for these matrices without significant changes. In order to keep things simple we have opted to describe the algorithm for one factorization only.
 
3
We have not taken a randomly upper triangular matrix as they are typically very ill-conditioned.
 
Literatur
5.
Zurück zum Zitat Benner, P., Kressner, D., Mehrmann, V.: Skew-Hamiltonian and Hamiltonian eigenvalue problems: Theory, algorithms and applications. In: Drmač, Z., Marušić, M., Tutek, Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 3–39. Springer, Netherlands (2005) Benner, P., Kressner, D., Mehrmann, V.: Skew-Hamiltonian and Hamiltonian eigenvalue problems: Theory, algorithms and applications. In: Drmač, Z., Marušić, M., Tutek, Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 3–39. Springer, Netherlands (2005)
6.
Zurück zum Zitat Benner, P., Laub, A.J., Mehrmann, V.: A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case, Preprints on Scientific Parallel Computing SPC 95–22, TU Chemnitz (1995) Benner, P., Laub, A.J., Mehrmann, V.: A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case, Preprints on Scientific Parallel Computing SPC 95–22, TU Chemnitz (1995)
7.
Zurück zum Zitat Benner, P., Mehrmann, V., Xu, H.: A new method for computing the stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math. 86, 17–43 (1997)MathSciNetCrossRefMATH Benner, P., Mehrmann, V., Xu, H.: A new method for computing the stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math. 86, 17–43 (1997)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. SIAM, Philadelphia (2012)MATH Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. SIAM, Philadelphia (2012)MATH
9.
Zurück zum Zitat Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part I: maintaining well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl. 23, 929–947 (2002)MathSciNetCrossRefMATH Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part I: maintaining well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl. 23, 929–947 (2002)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part II: aggressive early deflation. SIAM J. Matrix Anal. Appl. 23, 948–973 (2002)MathSciNetCrossRefMATH Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part II: aggressive early deflation. SIAM J. Matrix Anal. Appl. 23, 948–973 (2002)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Bunse-Gerstner, A.: An analysis of the HR algorithm for computing the eigenvalues of a matrix. Linear Algebra Appl. 35, 155–173 (1981)MathSciNetCrossRefMATH Bunse-Gerstner, A.: An analysis of the HR algorithm for computing the eigenvalues of a matrix. Linear Algebra Appl. 35, 155–173 (1981)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Cantero, M.J., Moral, L., Velazquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)MathSciNetCrossRefMATH Cantero, M.J., Moral, L., Velazquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Chu, D., Liu, X., Mehrmann, V.: A numerical method for computing the Hamiltonian Schur form. Numer. Math. 105, 375–412 (2007)MathSciNetCrossRefMATH Chu, D., Liu, X., Mehrmann, V.: A numerical method for computing the Hamiltonian Schur form. Numer. Math. 105, 375–412 (2007)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Ferranti, M., Mach, T., Vandebril, R.: Extended Hamiltonian Hessenberg matrices arise in projection based model order reduction. Proc. Appl. Math. Mech. 15, 583–584 (2015)CrossRef Ferranti, M., Mach, T., Vandebril, R.: Extended Hamiltonian Hessenberg matrices arise in projection based model order reduction. Proc. Appl. Math. Mech. 15, 583–584 (2015)CrossRef
17.
19.
Zurück zum Zitat Karlsson, L., Kressner, D., Lang, B.: Optimally packed chains of bulges in multishift QR algorithms. ACM Trans. Math. Softw. 40(2), 12 (2014) Karlsson, L., Kressner, D., Lang, B.: Optimally packed chains of bulges in multishift QR algorithms. ACM Trans. Math. Softw. 40(2), 12 (2014)
20.
Zurück zum Zitat Kimura, H.: Generalized Schwarz form and lattice-ladder realizations of digital filters. IEEE Trans. Circuits Syst. 32, 1130–1139 (1985)CrossRefMATH Kimura, H.: Generalized Schwarz form and lattice-ladder realizations of digital filters. IEEE Trans. Circuits Syst. 32, 1130–1139 (1985)CrossRefMATH
21.
Zurück zum Zitat Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems, vol. 46 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2005) Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems, vol. 46 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2005)
22.
23.
Zurück zum Zitat Mach, T., Pranić, M.S., Vandebril, R.: Computing approximate extended Krylov subspaces without explicit inversion. Electron. Trans. Numer. Anal. 40, 414–435 (2013)MathSciNetMATH Mach, T., Pranić, M.S., Vandebril, R.: Computing approximate extended Krylov subspaces without explicit inversion. Electron. Trans. Numer. Anal. 40, 414–435 (2013)MathSciNetMATH
24.
Zurück zum Zitat Mach, T., Van Barel, M., Vandebril, R.: Inverse eigenvalue problems linked to rational Arnoldi, and rational (non)symmetric Lanczos. J. Comput. Appl. Math. 272, 377–398 (2014)MathSciNetCrossRefMATH Mach, T., Van Barel, M., Vandebril, R.: Inverse eigenvalue problems linked to rational Arnoldi, and rational (non)symmetric Lanczos. J. Comput. Appl. Math. 272, 377–398 (2014)MathSciNetCrossRefMATH
25.
26.
Zurück zum Zitat Mehrmann, V.: The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution, vol. 163 of Lecture Notes in Control and Information Sciences, Springer, Berlin (1991) Mehrmann, V.: The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution, vol. 163 of Lecture Notes in Control and Information Sciences, Springer, Berlin (1991)
27.
Zurück zum Zitat Mehrmann, V., Schröder, C., Watkins, D.S.: A new block method for computing the Hamiltonian Schur form. Linear Algebra Appl. 431, 350–368 (2009)MathSciNetCrossRefMATH Mehrmann, V., Schröder, C., Watkins, D.S.: A new block method for computing the Hamiltonian Schur form. Linear Algebra Appl. 431, 350–368 (2009)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Vandebril, R.: Chasing bulges or rotations? A metamorphosis of the QR-algorithm. SIAM J. Matrix Anal. Appl. 32, 217–247 (2011)MathSciNetCrossRefMATH Vandebril, R.: Chasing bulges or rotations? A metamorphosis of the QR-algorithm. SIAM J. Matrix Anal. Appl. 32, 217–247 (2011)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Vandebril, R., Watkins, D.S.: A generalization of the multishift QR algorithm. SIAM J. Matrix Anal. Appl. 33, 759–779 (2012)MathSciNetCrossRefMATH Vandebril, R., Watkins, D.S.: A generalization of the multishift QR algorithm. SIAM J. Matrix Anal. Appl. 33, 759–779 (2012)MathSciNetCrossRefMATH
32.
34.
Zurück zum Zitat Watkins, D.S.: The transmission of shifts and shift blurring in the \({QR}\) algorithm. Linear Algebra Appl. 241–243, 877–896 (1996)MathSciNetCrossRefMATH Watkins, D.S.: The transmission of shifts and shift blurring in the \({QR}\) algorithm. Linear Algebra Appl. 241–243, 877–896 (1996)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Watkins, D.S.: A case where balancing is harmful. Electron. Trans. Numer. Anal. 23, 1–4 (2006)MathSciNetMATH Watkins, D.S.: A case where balancing is harmful. Electron. Trans. Numer. Anal. 23, 1–4 (2006)MathSciNetMATH
37.
Zurück zum Zitat Watkins, D.S.: On the reduction of a Hamiltonian matrix to Hamiltonian Schur form. Electron. Trans. Numer. Anal. 23, 141–157 (2006)MathSciNetMATH Watkins, D.S.: On the reduction of a Hamiltonian matrix to Hamiltonian Schur form. Electron. Trans. Numer. Anal. 23, 141–157 (2006)MathSciNetMATH
38.
Zurück zum Zitat Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia (2007)CrossRefMATH Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia (2007)CrossRefMATH
40.
Zurück zum Zitat Wilkinson, J.H.: The Algebraic Eigenvalue Problem, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1988) Wilkinson, J.H.: The Algebraic Eigenvalue Problem, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1988)
Metadaten
Titel
An extended Hamiltonian QR algorithm
verfasst von
Micol Ferranti
Bruno Iannazzo
Thomas Mach
Raf Vandebril
Publikationsdatum
01.09.2017
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 3/2017
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-017-0220-9

Weitere Artikel der Ausgabe 3/2017

Calcolo 3/2017 Zur Ausgabe