Skip to main content
Erschienen in: Calcolo 3/2017

01.09.2017

A numerical approach for solving singularly perturbed convection delay problems via exponentially fitted spline method

verfasst von: Ravi Kanth Adivi Sri Venkata, Murali Mohan Kumar Palli

Erschienen in: Calcolo | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper an exponentially fitted spline method is presented for solving singularly perturbed convection delay problems with boundary layer at left (or right) end of the domain. The error analysis of the scheme is investigated. It is shown that the proposed scheme provides second order accuracy, independent of the perturbation parameter. Numerical results are presented to illustrate the efficiency of the method.
Literatur
1.
Zurück zum Zitat Aziz, T., Khan, A.: A spline method for second-order singularly perturbed boundary-value problems. J. Comput. Appl. Math. 147(2), 445–452 (2002)MathSciNetCrossRefMATH Aziz, T., Khan, A.: A spline method for second-order singularly perturbed boundary-value problems. J. Comput. Appl. Math. 147(2), 445–452 (2002)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Bestehorn, M., Grigorieva, E.V.: Formation and propagation of localized states in extended systems. Annalen der Physik 13(78), 423–431 (2004)MathSciNetCrossRefMATH Bestehorn, M., Grigorieva, E.V.: Formation and propagation of localized states in extended systems. Annalen der Physik 13(78), 423–431 (2004)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Doolan, E.P., Miller, J.J., Schilders, W.H.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)MATH Doolan, E.P., Miller, J.J., Schilders, W.H.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)MATH
4.
Zurück zum Zitat Elsgolts, L.E., El-Sgol-Ts, L.E., El-Sgol-C, L.E.: Qualitative methods in mathematical analysis. American Mathematical Society, Providence (1964) Elsgolts, L.E., El-Sgol-Ts, L.E., El-Sgol-C, L.E.: Qualitative methods in mathematical analysis. American Mathematical Society, Providence (1964)
5.
Zurück zum Zitat Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH Geng, F.Z., Qian, S.P., Cui, M.G.: Improved reproducing kernel method for singularly perturbed differential–difference equations with boundary layer behavior. Appl. Math. Comput. 252, 58–63 (2015)MathSciNetMATH
6.
Zurück zum Zitat Kadalbajoo, M.K., Kumar, D.: Fitted mesh B-spline collocation method for singularly perturbed differential–difference equations with small delay. Appl. Math. Comput. 204(1), 90–98 (2008)MathSciNetMATH Kadalbajoo, M.K., Kumar, D.: Fitted mesh B-spline collocation method for singularly perturbed differential–difference equations with small delay. Appl. Math. Comput. 204(1), 90–98 (2008)MathSciNetMATH
7.
Zurück zum Zitat Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singularly perturbed delay differential equations. Appl. Math. Comput. 187(2), 797–814 (2007)MathSciNetMATH Kadalbajoo, M.K., Ramesh, V.P.: Hybrid method for numerical solution of singularly perturbed delay differential equations. Appl. Math. Comput. 187(2), 797–814 (2007)MathSciNetMATH
8.
Zurück zum Zitat Kadalbajoo, M.K., Sharma, K.K.: An \(\varepsilon \)-uniform fitted operator method for solving boundary-value problems for singularly perturbed delay differential equations: layer behavior. Int. J. Comput. Math. 80(10), 1261–1276 (2003)MathSciNetCrossRefMATH Kadalbajoo, M.K., Sharma, K.K.: An \(\varepsilon \)-uniform fitted operator method for solving boundary-value problems for singularly perturbed delay differential equations: layer behavior. Int. J. Comput. Math. 80(10), 1261–1276 (2003)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Kadalbajoo, M.K., Sharma, K.K.: Numerical analysis of singularly perturbed delay differential equations with layer behavior. Appl. Math. Comput. 157(1), 11–28 (2004)MathSciNetMATH Kadalbajoo, M.K., Sharma, K.K.: Numerical analysis of singularly perturbed delay differential equations with layer behavior. Appl. Math. Comput. 157(1), 11–28 (2004)MathSciNetMATH
10.
Zurück zum Zitat Kadalbajoo, M.K., Sharma, K.K.: \(\varepsilon \)-Uniform fitted mesh method for singularly perturbed differential–difference equations: Mixed type of shifts with layer behavior. Int. J. Comput. Math. 81(1), 49–62 (2004)MathSciNetCrossRefMATH Kadalbajoo, M.K., Sharma, K.K.: \(\varepsilon \)-Uniform fitted mesh method for singularly perturbed differential–difference equations: Mixed type of shifts with layer behavior. Int. J. Comput. Math. 81(1), 49–62 (2004)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Kadalbajoo, M.K., Sharma, K.K.: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations. Appl. Math. Comput. 197(2), 692–707 (2008)MathSciNetMATH Kadalbajoo, M.K., Sharma, K.K.: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations. Appl. Math. Comput. 197(2), 692–707 (2008)MathSciNetMATH
12.
Zurück zum Zitat Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential–difference equations. V. small shifts with layer behavior. SIAM J. Appl. Math. 54(1), 249–272 (1994)MathSciNetCrossRefMATH Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential–difference equations. V. small shifts with layer behavior. SIAM J. Appl. Math. 54(1), 249–272 (1994)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential–difference equations. SIAM J. Appl. Math. 42(3), 502–531 (1982)MathSciNetCrossRefMATH Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential–difference equations. SIAM J. Appl. Math. 42(3), 502–531 (1982)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential–difference equations. IV. A nonlinear example with layer behavior. Stud. Appl. Math. 84(3), 231–273 (1991)MathSciNetCrossRefMATH Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential–difference equations. IV. A nonlinear example with layer behavior. Stud. Appl. Math. 84(3), 231–273 (1991)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. VI. small shifts with rapid oscillations. SIAM J. Appl. Math. 54(1), 273–283 (1994)MathSciNetCrossRefMATH Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential–difference equations. VI. small shifts with rapid oscillations. SIAM J. Appl. Math. 54(1), 273–283 (1994)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Lasota, A., Wazewska, M.: Mathematical models of the red blood cell system. Mat. Stos 6, 25–40 (1976) Lasota, A., Wazewska, M.: Mathematical models of the red blood cell system. Mat. Stos 6, 25–40 (1976)
17.
Zurück zum Zitat Liu, L.B., Chen, Y.: Maximum norm a posteriori error estimates for a singularly perturbed differential difference equation with small delay. Appl. Math. Comput. 227, 801–810 (2014)MathSciNetMATH Liu, L.B., Chen, Y.: Maximum norm a posteriori error estimates for a singularly perturbed differential difference equation with small delay. Appl. Math. Comput. 227, 801–810 (2014)MathSciNetMATH
18.
Zurück zum Zitat Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)CrossRef Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)CrossRef
19.
Zurück zum Zitat O’malley, R.E.: Introduction to Singular Perturbations. Academic Press, New York (1974)MATH O’malley, R.E.: Introduction to Singular Perturbations. Academic Press, New York (1974)MATH
20.
Zurück zum Zitat Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-uniformly convergent non-standard finite difference methods for singularly perturbed differential difference equations with small delay. Appl. Math. Comput. 175(1), 864–890 (2006)MathSciNetMATH Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-uniformly convergent non-standard finite difference methods for singularly perturbed differential difference equations with small delay. Appl. Math. Comput. 175(1), 864–890 (2006)MathSciNetMATH
21.
Zurück zum Zitat Ramos, J.I.: Exponential methods for singularly perturbed ordinary differential–difference equations. Appl. Math. Comput. 182(2), 1528–1541 (2006)MathSciNetMATH Ramos, J.I.: Exponential methods for singularly perturbed ordinary differential–difference equations. Appl. Math. Comput. 182(2), 1528–1541 (2006)MathSciNetMATH
22.
Zurück zum Zitat Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962) Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)
23.
Zurück zum Zitat Young, D.M.: Iterative Solution of Large Systems. Academic Press, New York (1971)MATH Young, D.M.: Iterative Solution of Large Systems. Academic Press, New York (1971)MATH
Metadaten
Titel
A numerical approach for solving singularly perturbed convection delay problems via exponentially fitted spline method
verfasst von
Ravi Kanth Adivi Sri Venkata
Murali Mohan Kumar Palli
Publikationsdatum
01.09.2017
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 3/2017
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-017-0215-6

Weitere Artikel der Ausgabe 3/2017

Calcolo 3/2017 Zur Ausgabe