Skip to main content
Erschienen in: Calcolo 3/2017

01.09.2017

Data assimilation and sampling in Banach spaces

verfasst von: Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk

Erschienen in: Calcolo | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Adcock, B., Hansen, A.C.: Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harm. Anal. 32, 357–388 (2012)MathSciNetCrossRefMATH Adcock, B., Hansen, A.C.: Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harm. Anal. 32, 357–388 (2012)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Adcock, B., Hansen, A.C., Poon, C.: Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal. 45, 3132–3167 (2013)MathSciNetCrossRefMATH Adcock, B., Hansen, A.C., Poon, C.: Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal. 45, 3132–3167 (2013)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Adcock, B., Hansen, A.C., Shadrin, A.: A stability barrier for reconstructions from Fourier samples. SIAM J. Numer. Anal. 52, 125–139 (2014)MathSciNetCrossRefMATH Adcock, B., Hansen, A.C., Shadrin, A.: A stability barrier for reconstructions from Fourier samples. SIAM J. Numer. Anal. 52, 125–139 (2014)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings and Applications. Springer, Berlin (2009) Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings and Applications. Springer, Berlin (2009)
6.
Zurück zum Zitat Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 48. American Mathematical Society Colloquium Publications, Providence, RI (2000)MATH Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 48. American Mathematical Society Colloquium Publications, Providence, RI (2000)MATH
7.
Zurück zum Zitat Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for Greedy Algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)MathSciNetCrossRefMATH Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for Greedy Algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Data Assimilation in Reduced Modeling, SIAM UQ, to appear; arXiv: 1506.04770v1 (2015) Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Data Assimilation in Reduced Modeling, SIAM UQ, to appear; arXiv:​ 1506.​04770v1 (2015)
9.
Zurück zum Zitat , B.: Optimal Recovery of Functions and Integrals, First European Congress of Mathematics, Vol. I, pp. 371–390 (1992), Progr. Math., Birkhauser, Basel, 119 (1994) , B.: Optimal Recovery of Functions and Integrals, First European Congress of Mathematics, Vol. I, pp. 371–390 (1992), Progr. Math., Birkhauser, Basel, 119 (1994)
10.
Zurück zum Zitat Brown, A.: A rotund space have a subspace of codimension 2 with discontinuous metric projection. Mich. Math. J. 21, 145–151 (1974)CrossRefMATH Brown, A.: A rotund space have a subspace of codimension 2 with discontinuous metric projection. Mich. Math. J. 21, 145–151 (1974)CrossRefMATH
12.
Zurück zum Zitat Demanet, L., Townsend, A.: Stable extrapolation of analytic functions, preprint Demanet, L., Townsend, A.: Stable extrapolation of analytic functions, preprint
13.
Zurück zum Zitat DeVore, R., Lorentz, G.: Constructive Approximation, vol. 303. Springer, Grundlehren (1993)MATH DeVore, R., Lorentz, G.: Constructive Approximation, vol. 303. Springer, Grundlehren (1993)MATH
14.
15.
Zurück zum Zitat Figiel, T., Lindenstrauss, J., Milman, V.: The dimension of almost spherical sections of convex bodies. Acta Math. 139, 53–94 (1977)MathSciNetCrossRefMATH Figiel, T., Lindenstrauss, J., Milman, V.: The dimension of almost spherical sections of convex bodies. Acta Math. 139, 53–94 (1977)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Fournier, J.: An interpolation problem for coefficients of \(H^\infty \) functions. Proc. Am. Math. Soc. 42, 402–407 (1974)MathSciNetMATH Fournier, J.: An interpolation problem for coefficients of \(H^\infty \) functions. Proc. Am. Math. Soc. 42, 402–407 (1974)MathSciNetMATH
17.
Zurück zum Zitat Garkavi, A.: The Best Possible Net and the Best Possible Cross Section of a Set in a Normed Space, Vol. 39, pp. 111–132. Translations Series 2. American Mathematical Society, Providence, RI (1964) Garkavi, A.: The Best Possible Net and the Best Possible Cross Section of a Set in a Normed Space, Vol. 39, pp. 111–132. Translations Series 2. American Mathematical Society, Providence, RI (1964)
19.
Zurück zum Zitat Henrion, D., Tarbouriech, S., Arzelier, D.: LMI approximations for the radius of the intersection of ellipsoids: survey. J. Optim. Theory Appl. 108, 1–28 (2001)MathSciNetCrossRefMATH Henrion, D., Tarbouriech, S., Arzelier, D.: LMI approximations for the radius of the intersection of ellipsoids: survey. J. Optim. Theory Appl. 108, 1–28 (2001)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Kadec, M., Snobar, M.: Certain functionals on the Minkowski compactum. Mat. Zamet. 10, 453–457 (1971). (Russian)MathSciNet Kadec, M., Snobar, M.: Certain functionals on the Minkowski compactum. Mat. Zamet. 10, 453–457 (1971). (Russian)MathSciNet
21.
Zurück zum Zitat Konyagin, S.: A remark on renormings of nonreflexive spaces and the existence of a Chebyshev center. Mosc. Univ. Math. Bull. 43, 55–56 (1988)MathSciNetMATH Konyagin, S.: A remark on renormings of nonreflexive spaces and the existence of a Chebyshev center. Mosc. Univ. Math. Bull. 43, 55–56 (1988)MathSciNetMATH
22.
Zurück zum Zitat Lewis, J., Lakshmivarahan, S., Dhall, S.: Dynamic Data Assimilation: A Least Squares Approach, Encyclopedia of Mathematics and its Applications, vol. 104. Cambridge University Press, Cambridge (2006)CrossRefMATH Lewis, J., Lakshmivarahan, S., Dhall, S.: Dynamic Data Assimilation: A Least Squares Approach, Encyclopedia of Mathematics and its Applications, vol. 104. Cambridge University Press, Cambridge (2006)CrossRefMATH
23.
24.
Zurück zum Zitat Maday, Y., Patera, A., Penn, J., Yano, M.: A parametrized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Method Eng. 102, 933–965 (2015)CrossRefMATH Maday, Y., Patera, A., Penn, J., Yano, M.: A parametrized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Method Eng. 102, 933–965 (2015)CrossRefMATH
25.
Zurück zum Zitat Micchelli, C., Rivlin, T.: Lectures on optimal recovery, numerical analysis, Lancaster 1984 (Lancaster, 1984), 21–93. Lecture Notes in Math, vol. 1129. Springer, Berlin (1985) Micchelli, C., Rivlin, T.: Lectures on optimal recovery, numerical analysis, Lancaster 1984 (Lancaster, 1984), 21–93. Lecture Notes in Math, vol. 1129. Springer, Berlin (1985)
26.
Zurück zum Zitat Micchelli, C., Rivlin, T., Winograd, S.: The optimal recovery of smooth functions. Numerische Mathematik 26, 191–200 (1976)MathSciNetCrossRefMATH Micchelli, C., Rivlin, T., Winograd, S.: The optimal recovery of smooth functions. Numerische Mathematik 26, 191–200 (1976)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Milman, V., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986) Milman, V., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986)
28.
Zurück zum Zitat Powell, M.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)MATH Powell, M.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)MATH
29.
Zurück zum Zitat Platte, R., Trefethen, L., Kuijlaars, A.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53, 308–318 (2011)MathSciNetCrossRefMATH Platte, R., Trefethen, L., Kuijlaars, A.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53, 308–318 (2011)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Repovš, D., Semenov, P.: Continuous Selections of Multivalued Mappings. Springer, Berlin (1998)CrossRefMATH Repovš, D., Semenov, P.: Continuous Selections of Multivalued Mappings. Springer, Berlin (1998)CrossRefMATH
31.
Zurück zum Zitat Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Die Grundlehren der mathematischen Wissenschaften, vol. 171. Springer, Berlin (1970)CrossRef Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Die Grundlehren der mathematischen Wissenschaften, vol. 171. Springer, Berlin (1970)CrossRef
33.
Zurück zum Zitat Smith, P., Ward, J.: Restricted centers in \(C(\Omega )\). Proc. Am. Math. Soc. 48, 165–172 (1975)MathSciNetMATH Smith, P., Ward, J.: Restricted centers in \(C(\Omega )\). Proc. Am. Math. Soc. 48, 165–172 (1975)MathSciNetMATH
34.
Zurück zum Zitat Szarek, S.: On the best constants in the Khinchin inequality. Stud. Math. 58, 197–208 (1976)MathSciNetMATH Szarek, S.: On the best constants in the Khinchin inequality. Stud. Math. 58, 197–208 (1976)MathSciNetMATH
35.
Zurück zum Zitat Traub, J., Wozniakowski, H.: A General Theory of Optimal Algorithms. Academic Press, London (1980)MATH Traub, J., Wozniakowski, H.: A General Theory of Optimal Algorithms. Academic Press, London (1980)MATH
36.
Zurück zum Zitat Trefethen, L.N., Weideman, J.A.C.: Two results on polynomial interpolation in equally spaced points. J. Approx. Theory 65, 247–260 (1991)MathSciNetCrossRefMATH Trefethen, L.N., Weideman, J.A.C.: Two results on polynomial interpolation in equally spaced points. J. Approx. Theory 65, 247–260 (1991)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1991)CrossRefMATH Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1991)CrossRefMATH
38.
Zurück zum Zitat Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (2002)MATH Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (2002)MATH
Metadaten
Titel
Data assimilation and sampling in Banach spaces
verfasst von
Ronald DeVore
Guergana Petrova
Przemyslaw Wojtaszczyk
Publikationsdatum
01.09.2017
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 3/2017
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-017-0216-5

Weitere Artikel der Ausgabe 3/2017

Calcolo 3/2017 Zur Ausgabe