Skip to main content
Erschienen in: Calcolo 3/2017

01.09.2017

Backward difference formulae for Kuramoto–Sivashinsky type equations

verfasst von: Georgios Akrivis, Yiorgos-Sokratis Smyrlis

Erschienen in: Calcolo | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We analyze the discretization of the periodic initial value problem for Kuramoto–Sivashinsky type equations with Burgers nonlinearity by implicit–explicit backward difference formula (BDF) methods, establish stability and derive optimal order error estimates. We also study discretization in space by spectral methods.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Note that, if s is a nonnegative integer, then \(||\, \cdot \, ||_{H^s}\) is equivalent to the norm defined by
$$\begin{aligned} ||u||_s = \left( \sum _{j=0}^s\int _0^L |u^{(j)}(x)|^2\,dx\right) ^{1/2}. \end{aligned}$$
 
Literatur
1.
Zurück zum Zitat Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964) Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964)
2.
Zurück zum Zitat Akrivis, G.: Stability of implicit–explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. 53, 464–484 (2015)MathSciNetCrossRefMATH Akrivis, G.: Stability of implicit–explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. 53, 464–484 (2015)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Akrivis, G., Crouzeix, M., Makridakis, Ch.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)MathSciNetCrossRefMATH Akrivis, G., Crouzeix, M., Makridakis, Ch.: Implicit–explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82, 521–541 (1999)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Akrivis, G., Kalogirou, A., Papageorgiou, D.T., Smyrlis, Y.-S.: Linearly implicit schemes for multi-dimensional Kuramoto–Sivashinsky type equations arising in falling film flows. IMA J. Numer. Anal. 36, 317–336 (2016)MathSciNetCrossRefMATH Akrivis, G., Kalogirou, A., Papageorgiou, D.T., Smyrlis, Y.-S.: Linearly implicit schemes for multi-dimensional Kuramoto–Sivashinsky type equations arising in falling film flows. IMA J. Numer. Anal. 36, 317–336 (2016)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Akrivis, G., Katsoprinakis, E.: Backward difference formulae: new multipliers and stability properties for parabolic equations. Math. Comp. 85, 2195–2216 (2016)MathSciNetCrossRefMATH Akrivis, G., Katsoprinakis, E.: Backward difference formulae: new multipliers and stability properties for parabolic equations. Math. Comp. 85, 2195–2216 (2016)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131, 713–735 (2015)MathSciNetCrossRefMATH Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131, 713–735 (2015)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Akrivis, G., Papageorgiou, D.T., Smyrlis, Y.-S.: Linearly implicit methods for a semilinear parabolic system arising in two-phase flows. IMA J. Numer. Anal. 31, 299–321 (2011)MathSciNetCrossRefMATH Akrivis, G., Papageorgiou, D.T., Smyrlis, Y.-S.: Linearly implicit methods for a semilinear parabolic system arising in two-phase flows. IMA J. Numer. Anal. 31, 299–321 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Akrivis, G., Papageorgiou, D.T., Smyrlis, Y.-S.: Computational study of the dispersively modified Kuramoto–Sivashinsky equation. SIAM J. Sci. Comp. 34, A792–A813 (2012)MathSciNetCrossRefMATH Akrivis, G., Papageorgiou, D.T., Smyrlis, Y.-S.: Computational study of the dispersively modified Kuramoto–Sivashinsky equation. SIAM J. Sci. Comp. 34, A792–A813 (2012)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Akrivis, G., Smyrlis, Y.-S.: Implicit–explicit BDF spectral methods for the Kuramoto–Sivashinsky equation. Appl. Numer. Math. 51, 151–169 (2004)MathSciNetCrossRefMATH Akrivis, G., Smyrlis, Y.-S.: Implicit–explicit BDF spectral methods for the Kuramoto–Sivashinsky equation. Appl. Numer. Math. 51, 151–169 (2004)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Akrivis, G., Smyrlis, Y.-S.: Linearly implicit schemes for a class of dispersive–dissipative systems. Calcolo 48, 145–172 (2011)MathSciNetCrossRefMATH Akrivis, G., Smyrlis, Y.-S.: Linearly implicit schemes for a class of dispersive–dissipative systems. Calcolo 48, 145–172 (2011)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in fluid dynamics. Springer series in computational physics. Springer, New York (1988)CrossRefMATH Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in fluid dynamics. Springer series in computational physics. Springer, New York (1988)CrossRefMATH
12.
Zurück zum Zitat Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral manifolds and inertial manifolds for dissipative partial differential equations. Appl. Math. Sci., vol. 70, Springer, New York (1988) Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral manifolds and inertial manifolds for dissipative partial differential equations. Appl. Math. Sci., vol. 70, Springer, New York (1988)
13.
Zurück zum Zitat Crouzeix, M.: Une méthode multipas implicite–explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35, 257–276 (1980)MathSciNetCrossRefMATH Crouzeix, M.: Une méthode multipas implicite–explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35, 257–276 (1980)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Frankel, M., Roytburd, V.: Dissipative dynamics for a class of nonlinear pseudo-differential equations. J. Evol. Equ. 8, 491–512 (2008)MathSciNetCrossRefMATH Frankel, M., Roytburd, V.: Dissipative dynamics for a class of nonlinear pseudo-differential equations. J. Evol. Equ. 8, 491–512 (2008)MathSciNetCrossRefMATH
15.
16.
Zurück zum Zitat Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential–algebraic problems. Springer series in computational mathematics, vol. 14, 2nd rev edn. Springer, Heidelberg (1991) Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential–algebraic problems. Springer series in computational mathematics, vol. 14, 2nd rev edn. Springer, Heidelberg (1991)
17.
Zurück zum Zitat Ioakim, X., Smyrlis, Y.-S.: Analyticity for a class of non-linear evolutionary pseudo-differential equations. Eur. J. Appl. Math. 25, 783–793 (2014)MathSciNetCrossRefMATH Ioakim, X., Smyrlis, Y.-S.: Analyticity for a class of non-linear evolutionary pseudo-differential equations. Eur. J. Appl. Math. 25, 783–793 (2014)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Kas-Danouche, S., Papageorgiou, D.T., Siegel, M.: A mathematical model for core-annular flows with surfactants. Divulg. Mat. 12, 117–138 (2004)MathSciNetMATH Kas-Danouche, S., Papageorgiou, D.T., Siegel, M.: A mathematical model for core-annular flows with surfactants. Divulg. Mat. 12, 117–138 (2004)MathSciNetMATH
19.
Zurück zum Zitat Papageorgiou, D.T., Maldarelli, C., Rumschitzki, D.S.: Nonlinear interfacial stability of core-annular film flow. Phys. Fluids A 2(3), 340–352 (1990)MathSciNetCrossRefMATH Papageorgiou, D.T., Maldarelli, C., Rumschitzki, D.S.: Nonlinear interfacial stability of core-annular film flow. Phys. Fluids A 2(3), 340–352 (1990)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Kawahara, T.: Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51, 381–382 (1983)CrossRef Kawahara, T.: Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51, 381–382 (1983)CrossRef
21.
Zurück zum Zitat Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Suppl. Prog. Theor. Phys. 64, 346–367 (1978)CrossRef Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Suppl. Prog. Theor. Phys. 64, 346–367 (1978)CrossRef
22.
Zurück zum Zitat Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33, 1365–1385 (2013)MathSciNetCrossRefMATH Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33, 1365–1385 (2013)MathSciNetCrossRefMATH
23.
24.
25.
Zurück zum Zitat Stanislavova, M., Stefanov, A.: Asymptotic estimates and stability analysis of Kuramoto–Sivashinsky type models. J. Evol. Equ. 11, 605–635 (2011)MathSciNetCrossRefMATH Stanislavova, M., Stefanov, A.: Asymptotic estimates and stability analysis of Kuramoto–Sivashinsky type models. J. Evol. Equ. 11, 605–635 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
Backward difference formulae for Kuramoto–Sivashinsky type equations
verfasst von
Georgios Akrivis
Yiorgos-Sokratis Smyrlis
Publikationsdatum
01.09.2017
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 3/2017
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-016-0205-0

Weitere Artikel der Ausgabe 3/2017

Calcolo 3/2017 Zur Ausgabe