Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 8/2022

10.11.2021 | Research Article-Computer Engineering and Computer Science

An Improved Animal Migration Optimization Algorithm to Train the Feed-Forward Artificial Neural Networks

verfasst von: Şaban Gülcü

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The most important and demanding part of the artificial neural network is the training process which involves finding the most suitable values for the weights in the network architecture, a challenging optimization problem. Gradient approaches and the meta-heuristic approaches are two methods extensively used to optimize the weights in the network. Gradient approaches have serious disadvantages including getting stuck in local optima, inadequate exploration, etc. To overcome these disadvantages, meta-heuristic approaches are preferred in training the artificial neural network instead of gradient methods. Therefore, in this study, an improved animal migration optimization algorithm with the Lévy flight feature was proposed to train the multilayer perceptron. The proposed hybrid algorithm is named IAMO-MLP. The main contributions of this article are that the IAMO algorithm was developed, the IAMO-MLP algorithm can successfully escape from local optima, and the initial positions did not affect the performance of the IAMO-MLP algorithm. The enhanced algorithm was tested and validated against a wider set of benchmark functions and indicated that it substantially outperformed the original implementation. Afterward, the IAMO-MLP was compared with ten algorithms on five classification problems (xor, balloon, iris, breast cancer, and heart) and one real-world problem in terms of mean squared error, classification accuracy, and nonparametric statistical Friedman test. According to the results, the IAMO was successful in training the multilayer perceptron.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Turkoglu, B.; Kaya, E.: Training multi-layer perceptron with artificial algae algorithm. Eng. Sci. Technol. Int. J. 23, 1342–1350 (2020) Turkoglu, B.; Kaya, E.: Training multi-layer perceptron with artificial algae algorithm. Eng. Sci. Technol. Int. J. 23, 1342–1350 (2020)
2.
Zurück zum Zitat Öztemel, E.: Yapay sinir ağları Artificial Neural Networks. Papatya Publishing, London (2012) Öztemel, E.: Yapay sinir ağları Artificial Neural Networks. Papatya Publishing, London (2012)
3.
Zurück zum Zitat Frimpong, E.A.; Oluwasanmi, A.; Baagyere, E.Y.; Zhiguang, Q.: A feedforward artificial neural network model for classification and detection of type 2 diabetes. J. Phys. Conf. Ser. 1734, 012026 (2021)CrossRef Frimpong, E.A.; Oluwasanmi, A.; Baagyere, E.Y.; Zhiguang, Q.: A feedforward artificial neural network model for classification and detection of type 2 diabetes. J. Phys. Conf. Ser. 1734, 012026 (2021)CrossRef
4.
Zurück zum Zitat Tümer, A.; Edebali, S.; Gülcü, Ş: Modeling of removal of chromium (VI) from aqueous solutions using artificial neural network. Iran. J. Chem. Chem. Eng. 39, 163–175 (2020) Tümer, A.; Edebali, S.; Gülcü, Ş: Modeling of removal of chromium (VI) from aqueous solutions using artificial neural network. Iran. J. Chem. Chem. Eng. 39, 163–175 (2020)
5.
Zurück zum Zitat Sarkar, S.D.; KB, A.S.: Face recognition using artificial neural network and feature extraction. In: 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE, pp. 417–422 (2020) Sarkar, S.D.; KB, A.S.: Face recognition using artificial neural network and feature extraction. In: 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE, pp. 417–422 (2020)
6.
Zurück zum Zitat Patel, P.; Doss, A.S.A.; Kalyan, L.P.; Tarwadi, P.J.: Speech recognition using neural network for mobile robot navigation. Trends Mech. Biomed. Des. 6, 665–676 (2021)CrossRef Patel, P.; Doss, A.S.A.; Kalyan, L.P.; Tarwadi, P.J.: Speech recognition using neural network for mobile robot navigation. Trends Mech. Biomed. Des. 6, 665–676 (2021)CrossRef
7.
Zurück zum Zitat Madenci, E.; Gülcü, Ş: Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM. Struct. Eng. Mech. 75, 633–642 (2020) Madenci, E.; Gülcü, Ş: Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM. Struct. Eng. Mech. 75, 633–642 (2020)
8.
Zurück zum Zitat Kamal, L.; Kodaz, H.: Training artificial neural network by bat optimization algorithms. Int. J. Adv. Comput. Eng. Netw. 5, 53–56 (2017) Kamal, L.; Kodaz, H.: Training artificial neural network by bat optimization algorithms. Int. J. Adv. Comput. Eng. Netw. 5, 53–56 (2017)
9.
Zurück zum Zitat Tang, R.; Fong, S.; Deb, S.; Vasilakos, A.V.; Millham, R.C.: Dynamic group optimisation algorithm for training feed-forward neural networks. Neurocomputing 314, 1–19 (2018)CrossRef Tang, R.; Fong, S.; Deb, S.; Vasilakos, A.V.; Millham, R.C.: Dynamic group optimisation algorithm for training feed-forward neural networks. Neurocomputing 314, 1–19 (2018)CrossRef
10.
Zurück zum Zitat Chiclana, F.; Kumar, R.; Mittal, M.; Khari, M.; Chatterjee, J.M.; Baik, S.W.: ARM–AMO: an efficient association rule mining algorithm based on animal migration optimization. Knowl.-Based Syst. 154, 68–80 (2018)CrossRef Chiclana, F.; Kumar, R.; Mittal, M.; Khari, M.; Chatterjee, J.M.; Baik, S.W.: ARM–AMO: an efficient association rule mining algorithm based on animal migration optimization. Knowl.-Based Syst. 154, 68–80 (2018)CrossRef
11.
Zurück zum Zitat Hou, L.; Gao, J.; Chen, R.: An information entropy-based animal migration optimization algorithm for data clustering. Entropy 18, 185 (2016)CrossRef Hou, L.; Gao, J.; Chen, R.: An information entropy-based animal migration optimization algorithm for data clustering. Entropy 18, 185 (2016)CrossRef
12.
Zurück zum Zitat Duraki, S.; Demirci, S.; Aslan, S.: UAV placement with animal migration optimization algorithm. In: 2020 28th Telecommunications Forum (TELFOR), IEEE, pp. 1–4 (2020) Duraki, S.; Demirci, S.; Aslan, S.: UAV placement with animal migration optimization algorithm. In: 2020 28th Telecommunications Forum (TELFOR), IEEE, pp. 1–4 (2020)
13.
Zurück zum Zitat Verma, J.; Kesswani, N.: AMIGM: animal migration inspired group mobility model for mobile Ad hoc networks. Scalable Comput. Pract. Exper. 20, 577–590 (2019)CrossRef Verma, J.; Kesswani, N.: AMIGM: animal migration inspired group mobility model for mobile Ad hoc networks. Scalable Comput. Pract. Exper. 20, 577–590 (2019)CrossRef
14.
Zurück zum Zitat Chinta, P.; Subhashini, K.; Satapathy, J.: Optimal power flow using a new evolutionary approach: animal migration optimization (2018) Chinta, P.; Subhashini, K.; Satapathy, J.: Optimal power flow using a new evolutionary approach: animal migration optimization (2018)
15.
Zurück zum Zitat Ülker, E.: An elitist approach for solving the traveling salesman problem using an animal migration optimization algorithm. Turk. J. Electr. Eng. Comput. Sci. 26, 605–617 (2018)CrossRef Ülker, E.: An elitist approach for solving the traveling salesman problem using an animal migration optimization algorithm. Turk. J. Electr. Eng. Comput. Sci. 26, 605–617 (2018)CrossRef
16.
Zurück zum Zitat Morales, A.; Crawford, B.; Soto, R.; Lemus-Romani, J.; Astorga, G.; Salas-Fernández, A.; Rubio, J.-M.: Optimization of bridges reinforcement by conversion to tied arch using an animal migration algorithm. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Springer, pp. 827–834 (2019) Morales, A.; Crawford, B.; Soto, R.; Lemus-Romani, J.; Astorga, G.; Salas-Fernández, A.; Rubio, J.-M.: Optimization of bridges reinforcement by conversion to tied arch using an animal migration algorithm. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Springer, pp. 827–834 (2019)
17.
Zurück zum Zitat Farshi, T.R.: A multilevel image thresholding using the animal migration optimization algorithm. Iran J. Comput. Sci. 2, 9–22 (2019)CrossRef Farshi, T.R.: A multilevel image thresholding using the animal migration optimization algorithm. Iran J. Comput. Sci. 2, 9–22 (2019)CrossRef
18.
Zurück zum Zitat Aljarah, I.; Faris, H.; Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft. Comput. 22, 1–15 (2018)CrossRef Aljarah, I.; Faris, H.; Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft. Comput. 22, 1–15 (2018)CrossRef
19.
Zurück zum Zitat Benmessahel, I.; Xie, K.; Chellal, M.: A new evolutionary neural networks based on intrusion detection systems using multiverse optimization. Appl. Intell. 48, 2315–2327 (2018)CrossRef Benmessahel, I.; Xie, K.; Chellal, M.: A new evolutionary neural networks based on intrusion detection systems using multiverse optimization. Appl. Intell. 48, 2315–2327 (2018)CrossRef
20.
Zurück zum Zitat Chatterjee, S.; Sarkar, S.; Hore, S.; Dey, N.; Ashour, A.S.; Balas, V.E.: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput. Appl. 28, 2005–2016 (2017)CrossRef Chatterjee, S.; Sarkar, S.; Hore, S.; Dey, N.; Ashour, A.S.; Balas, V.E.: Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput. Appl. 28, 2005–2016 (2017)CrossRef
21.
Zurück zum Zitat Tezel, G.; Uymaz, S.A.; Yel, E.: Combining artificial Algae Algorithm to artificial neural network for optimization of weights. Data Sci. Appl. 1, 37–44 (2018) Tezel, G.; Uymaz, S.A.; Yel, E.: Combining artificial Algae Algorithm to artificial neural network for optimization of weights. Data Sci. Appl. 1, 37–44 (2018)
22.
Zurück zum Zitat Yamany, W.; Fawzy, M.; Tharwat, A.; Hassanien, A.E.: Moth-flame optimization for training multi-layer perceptrons. In: 2015 11th International Computer Engineering Conference (ICENCO), IEEE, pp. 267–272 (2015) Yamany, W.; Fawzy, M.; Tharwat, A.; Hassanien, A.E.: Moth-flame optimization for training multi-layer perceptrons. In: 2015 11th International Computer Engineering Conference (ICENCO), IEEE, pp. 267–272 (2015)
23.
Zurück zum Zitat Jaddi, N.S.; Abdullah, S.; Hamdan, A.R.: Optimization of neural network model using modified bat-inspired algorithm. Appl. Soft Comput. 37, 71–86 (2015)CrossRef Jaddi, N.S.; Abdullah, S.; Hamdan, A.R.: Optimization of neural network model using modified bat-inspired algorithm. Appl. Soft Comput. 37, 71–86 (2015)CrossRef
24.
Zurück zum Zitat Erdoğan, F.; Gülcü, Ş.: Training of Artificial Neural Networks using Meta Heuristic Algorithms. In: The International Aluminium-Themed Engineering and Natural Sciences Conference (IATENS19), Konya, Turkey, pp. 124–128 (2019). Erdoğan, F.; Gülcü, Ş.: Training of Artificial Neural Networks using Meta Heuristic Algorithms. In: The International Aluminium-Themed Engineering and Natural Sciences Conference (IATENS19), Konya, Turkey, pp. 124–128 (2019).
25.
Zurück zum Zitat Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43, 150–161 (2015)CrossRef Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43, 150–161 (2015)CrossRef
26.
Zurück zum Zitat Gülcü, Ş: Training of the artificial neural networks using states of matter search algorithm. Int. J. Intell. Syst. Appl. Eng. 8, 131–136 (2020)CrossRef Gülcü, Ş: Training of the artificial neural networks using states of matter search algorithm. Int. J. Intell. Syst. Appl. Eng. 8, 131–136 (2020)CrossRef
27.
Zurück zum Zitat Zivkovic, M.; Bacanin, N.; Venkatachalam, K.; Nayyar, A.; Djordjevic, A.; Strumberger, I.; Al-Turjman, F.: COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 66, 102669 (2021)CrossRef Zivkovic, M.; Bacanin, N.; Venkatachalam, K.; Nayyar, A.; Djordjevic, A.; Strumberger, I.; Al-Turjman, F.: COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 66, 102669 (2021)CrossRef
28.
Zurück zum Zitat De Rosa, G.H.; Papa, J.P.; Yang, X.-S.: Handling dropout probability estimation in convolution neural networks using meta-heuristics. Soft. Comput. 22, 6147–6156 (2018)CrossRef De Rosa, G.H.; Papa, J.P.; Yang, X.-S.: Handling dropout probability estimation in convolution neural networks using meta-heuristics. Soft. Comput. 22, 6147–6156 (2018)CrossRef
29.
Zurück zum Zitat Cuevas, E.; Echavarría, A.; Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl. Intell. 40, 256–272 (2014)CrossRef Cuevas, E.; Echavarría, A.; Ramírez-Ortegón, M.A.: An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl. Intell. 40, 256–272 (2014)CrossRef
30.
Zurück zum Zitat Hagan, M.; Demuth, H.; Beale, M.: Neural Network Design. PWS, Boston (1996) Hagan, M.; Demuth, H.; Beale, M.: Neural Network Design. PWS, Boston (1996)
31.
Zurück zum Zitat Moghaddam, A.H.; Moghaddam, M.H.; Esfandyari, M.: Stock market index prediction using artificial neural network. J. Econ. Finance Administr. Sci. 21, 89–93 (2016)CrossRef Moghaddam, A.H.; Moghaddam, M.H.; Esfandyari, M.: Stock market index prediction using artificial neural network. J. Econ. Finance Administr. Sci. 21, 89–93 (2016)CrossRef
32.
Zurück zum Zitat Salah, M.; Altalla, K.; Salah, A.; Abu-Naser, S.S.: Predicting medical expenses using artificial neural network. Int. J. Eng. Inf. Syst. 2, 11–17 (2018) Salah, M.; Altalla, K.; Salah, A.; Abu-Naser, S.S.: Predicting medical expenses using artificial neural network. Int. J. Eng. Inf. Syst. 2, 11–17 (2018)
33.
34.
Zurück zum Zitat Beşikçi, E.B.; Arslan, O.; Turan, O.; Ölçer, A.: An artificial neural network based decision support system for energy efficient ship operations. Comput. Oper. Res. 66, 393–401 (2016)MATHCrossRef Beşikçi, E.B.; Arslan, O.; Turan, O.; Ölçer, A.: An artificial neural network based decision support system for energy efficient ship operations. Comput. Oper. Res. 66, 393–401 (2016)MATHCrossRef
35.
Zurück zum Zitat Torabi-Kaveh, M.; Naseri, F.; Saneie, S.; Sarshari, B.: Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab. J. Geosci. 8, 2889–2897 (2015)CrossRef Torabi-Kaveh, M.; Naseri, F.; Saneie, S.; Sarshari, B.: Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab. J. Geosci. 8, 2889–2897 (2015)CrossRef
36.
Zurück zum Zitat Elkatatny, S.; Tariq, Z.; Mahmoud, M.: Real time prediction of drilling fluid rheological properties using Artificial Neural Networks visible mathematical model (white box). J. Petrol. Sci. Eng. 146, 1202–1210 (2016)CrossRef Elkatatny, S.; Tariq, Z.; Mahmoud, M.: Real time prediction of drilling fluid rheological properties using Artificial Neural Networks visible mathematical model (white box). J. Petrol. Sci. Eng. 146, 1202–1210 (2016)CrossRef
37.
Zurück zum Zitat Bre, F.; Gimenez, J.M.; Fachinotti, V.D.: Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings 158, 1429–1441 (2018)CrossRef Bre, F.; Gimenez, J.M.; Fachinotti, V.D.: Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings 158, 1429–1441 (2018)CrossRef
38.
Zurück zum Zitat Ahire, J.: Artificial Neural Networks: the Brain behind AI, Lulu. com, (2018) Ahire, J.: Artificial Neural Networks: the Brain behind AI, Lulu. com, (2018)
39.
Zurück zum Zitat Braha, D.: Global civil unrest: contagion, self-organization, and prediction. PloS One 7, e48596 (2012)CrossRef Braha, D.: Global civil unrest: contagion, self-organization, and prediction. PloS One 7, e48596 (2012)CrossRef
40.
Zurück zum Zitat Li, X.; Zhang, J.; Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24, 1867–1877 (2014)CrossRef Li, X.; Zhang, J.; Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24, 1867–1877 (2014)CrossRef
41.
Zurück zum Zitat Lai, Z.; Hu, X.; Jiang, C.: An intelligent algorithm with interactive learning mechanism for high-dimensional optimization problem based on improved animal migration optimization. Concurr. Comput. Pract. Exper. 5, e5774 (2020) Lai, Z.; Hu, X.; Jiang, C.: An intelligent algorithm with interactive learning mechanism for high-dimensional optimization problem based on improved animal migration optimization. Concurr. Comput. Pract. Exper. 5, e5774 (2020)
42.
Zurück zum Zitat Cao, Y.; Li, X.; Wang, J.: Opposition-based animal migration optimization. Math. Problems Eng. 2, 19 (2013)MathSciNetMATH Cao, Y.; Li, X.; Wang, J.: Opposition-based animal migration optimization. Math. Problems Eng. 2, 19 (2013)MathSciNetMATH
43.
Zurück zum Zitat Humphries, N.E.; Queiroz, N.; Dyer, J.R.; Pade, N.G.; Musyl, M.K.; Schaefer, K.M.; Fuller, D.W.; Brunnschweiler, J.M.; Doyle, T.K.; Houghton, J.D.: Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 1066–1069 (2010)CrossRef Humphries, N.E.; Queiroz, N.; Dyer, J.R.; Pade, N.G.; Musyl, M.K.; Schaefer, K.M.; Fuller, D.W.; Brunnschweiler, J.M.; Doyle, T.K.; Houghton, J.D.: Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 1066–1069 (2010)CrossRef
44.
45.
Zurück zum Zitat Bachir, R.; Mohammed, A.M.S.; Habib, T.: Using artificial neural networks approach to estimate compressive strength for rubberized concrete. Periodica Polytechnica Civ. Eng. 62, 858–865 (2018) Bachir, R.; Mohammed, A.M.S.; Habib, T.: Using artificial neural networks approach to estimate compressive strength for rubberized concrete. Periodica Polytechnica Civ. Eng. 62, 858–865 (2018)
46.
Zurück zum Zitat Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks, Institute of Electrical and Electronics Engineers (IEEE), pp. 1942–1948 (1995) Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks, Institute of Electrical and Electronics Engineers (IEEE), pp. 1942–1948 (1995)
47.
Zurück zum Zitat Storn, R.; Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetMATHCrossRef Storn, R.; Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008)CrossRef Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008)CrossRef
49.
Zurück zum Zitat Yang, X.-S.; Deb, S.: Cuckoo search via Lévy flights. In: IEEE 2009 World congress on nature & biologically inspired computing (NaBIC), pp. 210–214 (2009). Yang, X.-S.; Deb, S.: Cuckoo search via Lévy flights. In: IEEE 2009 World congress on nature & biologically inspired computing (NaBIC), pp. 210–214 (2009).
50.
Zurück zum Zitat Yang, X.-S.: Firefly algorithm, Levy flights and global optimization. In: Research and development in intelligent systems XXVI, Springer, pp. 209–218 (2010) Yang, X.-S.: Firefly algorithm, Levy flights and global optimization. In: Research and development in intelligent systems XXVI, Springer, pp. 209–218 (2010)
51.
Zurück zum Zitat Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)MATHCrossRef Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)MATHCrossRef
52.
Zurück zum Zitat Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)MathSciNetMATHCrossRef Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)MathSciNetMATHCrossRef
53.
Zurück zum Zitat Raj, B.; Ganesan, N.; Shashikala, A.: Engineering properties of self-compacting rubberized concrete. J. Reinf. Plast. Compos. 30, 1923–1930 (2011)CrossRef Raj, B.; Ganesan, N.; Shashikala, A.: Engineering properties of self-compacting rubberized concrete. J. Reinf. Plast. Compos. 30, 1923–1930 (2011)CrossRef
54.
Zurück zum Zitat Duplan, F.; Abou-Chakra, A.; Turatsinze, A.; Escadeillas, G.; Brule, S.; Masse, F.: Prediction of modulus of elasticity based on micromechanics theory and application to low-strength mortars. Constr. Build. Mater. 50, 437–447 (2014)CrossRef Duplan, F.; Abou-Chakra, A.; Turatsinze, A.; Escadeillas, G.; Brule, S.; Masse, F.: Prediction of modulus of elasticity based on micromechanics theory and application to low-strength mortars. Constr. Build. Mater. 50, 437–447 (2014)CrossRef
55.
Zurück zum Zitat Gesoğlu, M.; Güneyisi, E.; Khoshnaw, G.; İpek, S.: Investigating properties of pervious concretes containing waste tire rubbers. Constr. Build. Mater. 63, 206–213 (2014)CrossRef Gesoğlu, M.; Güneyisi, E.; Khoshnaw, G.; İpek, S.: Investigating properties of pervious concretes containing waste tire rubbers. Constr. Build. Mater. 63, 206–213 (2014)CrossRef
56.
Zurück zum Zitat Topcu, I.B.; Sarıdemir, M.: Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput. Mater. Sci. 41, 117–125 (2007)CrossRef Topcu, I.B.; Sarıdemir, M.: Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput. Mater. Sci. 41, 117–125 (2007)CrossRef
57.
Zurück zum Zitat Gandomi, A.H.; Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)MathSciNetMATHCrossRef Gandomi, A.H.; Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)MathSciNetMATHCrossRef
58.
Zurück zum Zitat Wang, G.-G.; Deb, S.; Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31, 1995–2014 (2019)CrossRef Wang, G.-G.; Deb, S.; Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31, 1995–2014 (2019)CrossRef
59.
Zurück zum Zitat Wang, G.-G.; Deb, S.; Coelho, L.D.S.: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-inspired Comput. 12, 1–22 (2018)CrossRef Wang, G.-G.; Deb, S.; Coelho, L.D.S.: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-inspired Comput. 12, 1–22 (2018)CrossRef
60.
Zurück zum Zitat Li, J.; Lei, H.; Alavi, A.H.; Wang, G.-G.: Elephant herding optimization: variants, hybrids, and applications. Mathematics 8, 1415 (2020)CrossRef Li, J.; Lei, H.; Alavi, A.H.; Wang, G.-G.: Elephant herding optimization: variants, hybrids, and applications. Mathematics 8, 1415 (2020)CrossRef
61.
Zurück zum Zitat Wang, G.-G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 10, 151–164 (2018)CrossRef Wang, G.-G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 10, 151–164 (2018)CrossRef
62.
Zurück zum Zitat Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S.: Slime mould algorithm: A new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020)CrossRef Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S.: Slime mould algorithm: A new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020)CrossRef
63.
Zurück zum Zitat Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)CrossRef Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)CrossRef
Metadaten
Titel
An Improved Animal Migration Optimization Algorithm to Train the Feed-Forward Artificial Neural Networks
verfasst von
Şaban Gülcü
Publikationsdatum
10.11.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 8/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06286-z

Weitere Artikel der Ausgabe 8/2022

Arabian Journal for Science and Engineering 8/2022 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

AI-Based Mobile Edge Computing for IoT: Applications, Challenges, and Future Scope

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.