Skip to main content
Erschienen in: Wireless Personal Communications 4/2016

13.06.2016

An Innovative Design: MOS Based Full-Wave Centre-Tapped Rectifier

verfasst von: Prateek Jain, Shyam Akashe

Erschienen in: Wireless Personal Communications | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel, more competent, low leakage and comparatively high speed full-wave centre-tapped rectifier is introduced with minimum distortion. Proficient and exploratory combinations of PMOS–PMOS or NMOS–NMOS logic are utilized to design full-wave centre-tapped rectifier. The scrupulous PMOS–PMOS logic with augmented stacked NMOS transistor is communal form of two PMOS and one NMOS transistor. The main motive of manipulating these circuits is to maintain the substrate biasing during circuit operation. The substrate biasing refers the exploitation in which substrate and drain/source terminal of a transistor is kept in reverse biasing mode. Due to utilization of modified MOS structure after replacing of diode, efficiency of full-wave centre-tapped rectifier is increased up to 20 % with compare to p-n junction diode based full wave centre-tapped rectifier and leakage power dissipation is reduced up to 57 %. The proposed circuit is designed to utilize the body effect properly to reduce the total leakage power of the circuit. The novelty of proposed circuit is the uniqueness of combination of MOS. Due to this; the proposed circuit has impressive resultant parameter with compare to other circuits and previous results. Proposed MOS based full-wave centre-tapped rectifier is optimized at 45 nm CMOS technology and cadence simulation experimental implementations of the leakage power and efficiency demonstrate better consistency through the proposed circuit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Peters, C., et al. (2007). CMOS integrated highly efficient full wave rectifier. In Proceedings of IEEE ISCAS, pp. 2415–2418. Peters, C., et al. (2007). CMOS integrated highly efficient full wave rectifier. In Proceedings of IEEE ISCAS, pp. 2415–2418.
2.
Zurück zum Zitat Akashe, S., et al. (2012). Leakage current reduction techniques for 7T SRAM cell in 45 nm technology. Journal of Wireless Personal Communications. doi:10.1007/s11277-012-0805-1. Akashe, S., et al. (2012). Leakage current reduction techniques for 7T SRAM cell in 45 nm technology. Journal of Wireless Personal Communications. doi:10.​1007/​s11277-012-0805-1.
3.
Zurück zum Zitat Xu, H., et al. (2011). A temperature and process compensated ultralow-voltage rectifier in standard threshold CMOS for energy harvesting applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(12), 812–816.CrossRef Xu, H., et al. (2011). A temperature and process compensated ultralow-voltage rectifier in standard threshold CMOS for energy harvesting applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(12), 812–816.CrossRef
4.
Zurück zum Zitat Mansano, A., et al. (2013). A high efficiency orthogonally switching passive charge pump rectifier for energy harvesters. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(7), 1959–1966.CrossRef Mansano, A., et al. (2013). A high efficiency orthogonally switching passive charge pump rectifier for energy harvesters. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(7), 1959–1966.CrossRef
5.
Zurück zum Zitat Lee, H. (2011). An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively-powered applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(8), 1749–1760.MathSciNetCrossRef Lee, H. (2011). An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively-powered applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(8), 1749–1760.MathSciNetCrossRef
6.
Zurück zum Zitat Shinoda, R., et al. (2012). Voltage-boosting wireless power delivery system with fast load tracker by ΔΣ-modulated sub-harmonic resonant switching. In Proceedings of ISSCC Digest of Technical Papers, pp. 288–289. Shinoda, R., et al. (2012). Voltage-boosting wireless power delivery system with fast load tracker by ΔΣ-modulated sub-harmonic resonant switching. In Proceedings of ISSCC Digest of Technical Papers, pp. 288–289.
7.
Zurück zum Zitat Farrarons, J. C., et al. (2011). A CMOS self-powered front-end architecture for subcutaneous event-detector devices. New York, NY: Springer.CrossRef Farrarons, J. C., et al. (2011). A CMOS self-powered front-end architecture for subcutaneous event-detector devices. New York, NY: Springer.CrossRef
8.
Zurück zum Zitat Sun, T., et al. (2013). Wireless power transfer for medical microsystems. New York, NY: Springer.CrossRef Sun, T., et al. (2013). Wireless power transfer for medical microsystems. New York, NY: Springer.CrossRef
9.
Zurück zum Zitat Akashe, S., et al. (2015). FinFET design considerations based on Schmitt trigger with slew rate and gain-bandwidth product analysis. Journal of Wireless Personal Communications. doi:10.1007/s11277-015-3027-5. Akashe, S., et al. (2015). FinFET design considerations based on Schmitt trigger with slew rate and gain-bandwidth product analysis. Journal of Wireless Personal Communications. doi:10.​1007/​s11277-015-3027-5.
10.
Zurück zum Zitat Mollazadeh, M., et al. (2009). Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Transactions on Biomedical Engineering, 3(1), 1–10. Mollazadeh, M., et al. (2009). Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials. IEEE Transactions on Biomedical Engineering, 3(1), 1–10.
11.
Zurück zum Zitat Kurs, A., et al. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.MathSciNetCrossRef Kurs, A., et al. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.MathSciNetCrossRef
12.
Zurück zum Zitat Vanderelli, T. A. (2006). Wireless power transfer via strongly coupled magnetic resonances. US Patent 7,027,311, April 6, 2006. Vanderelli, T. A. (2006). Wireless power transfer via strongly coupled magnetic resonances. US Patent 7,027,311, April 6, 2006.
13.
Zurück zum Zitat O’Brien, K., et al. (2003). Analysis of wireless power supplies for industrial automation systems. In Proceedings of 29th annual conference of the IEEE IECON, Vol. 1, pp. 367–372. O’Brien, K., et al. (2003). Analysis of wireless power supplies for industrial automation systems. In Proceedings of 29th annual conference of the IEEE IECON, Vol. 1, pp. 367–372.
14.
Zurück zum Zitat Karalis, A., et al. (2008). Efficient wireless non-radiative mid-range energy transfer. Annalen der Physik, 323(1), 34–48. Karalis, A., et al. (2008). Efficient wireless non-radiative mid-range energy transfer. Annalen der Physik, 323(1), 34–48.
16.
Zurück zum Zitat Qingyun, M., et al. (2011). A low-loss rectifier unit for inductive-powering of biomedical implants. In Proceedings of international conference of the VLSI System on Chip, pp. 86–89. Qingyun, M., et al. (2011). A low-loss rectifier unit for inductive-powering of biomedical implants. In Proceedings of international conference of the VLSI System on Chip, pp. 86–89.
17.
Zurück zum Zitat Gift, S. J. G., et al. (2007). Versatile precision full-wave rectifiers for instrumentation and measurement. IEEE Transactions on Instrumentation and Measurement, 56(5), 1703–1710.CrossRef Gift, S. J. G., et al. (2007). Versatile precision full-wave rectifiers for instrumentation and measurement. IEEE Transactions on Instrumentation and Measurement, 56(5), 1703–1710.CrossRef
18.
Zurück zum Zitat Djukic, S. R. (2008). Full-wave current conveyor precision rectifier. Serbian Journal of Electrical Engineering, 5(2), 263–271.CrossRef Djukic, S. R. (2008). Full-wave current conveyor precision rectifier. Serbian Journal of Electrical Engineering, 5(2), 263–271.CrossRef
19.
Zurück zum Zitat Gray, P., et al. (2001). Analysis and design of analog integrated circuits. New York: Wiley. Gray, P., et al. (2001). Analysis and design of analog integrated circuits. New York: Wiley.
20.
Zurück zum Zitat Gift, S. J. G. (2000). A high-performance full-wave rectifier circuit. International Journal of Electronics, 87(8), 925–930.CrossRef Gift, S. J. G. (2000). A high-performance full-wave rectifier circuit. International Journal of Electronics, 87(8), 925–930.CrossRef
21.
Zurück zum Zitat Hayatley, K., et al. (1994). Temperature independent circuit conveyor precision rectifier. Electronics Letters, 30(25), 2091–2093.CrossRef Hayatley, K., et al. (1994). Temperature independent circuit conveyor precision rectifier. Electronics Letters, 30(25), 2091–2093.CrossRef
22.
Zurück zum Zitat Gayakwad, R. A. (2007). Op-amps and linear integrated circuits (3rd ed., pp. 316–318). New Delhi: Prentice-Hall. Gayakwad, R. A. (2007). Op-amps and linear integrated circuits (3rd ed., pp. 316–318). New Delhi: Prentice-Hall.
23.
Zurück zum Zitat Sawan, M., et al. (2005). Wirelessly powered and bidirectional data exchanged in smart medical microsystems. In Proceedings of the IEEE custom integrated circuits conference, San Jose, CA, pp. 5–12. Sawan, M., et al. (2005). Wirelessly powered and bidirectional data exchanged in smart medical microsystems. In Proceedings of the IEEE custom integrated circuits conference, San Jose, CA, pp. 5–12.
24.
Zurück zum Zitat Huang, Q., et al. (1998). A 0.5-mW passive telemetry IC of biomedical applications. IEEE Journal of Solid-State Circuits, 33(7), 937–946.CrossRef Huang, Q., et al. (1998). A 0.5-mW passive telemetry IC of biomedical applications. IEEE Journal of Solid-State Circuits, 33(7), 937–946.CrossRef
25.
Zurück zum Zitat Lee, S. Y., et al. (2005). An implantable wireless bidirectional com-munication microstimulator for neuromuscular stimulation. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2526–2538.CrossRef Lee, S. Y., et al. (2005). An implantable wireless bidirectional com-munication microstimulator for neuromuscular stimulation. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2526–2538.CrossRef
26.
Zurück zum Zitat Hu, Y., et al. (2005). A fully integrated low-power BPSK demod-ulator for implantable medical devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2552–2562.CrossRef Hu, Y., et al. (2005). A fully integrated low-power BPSK demod-ulator for implantable medical devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2552–2562.CrossRef
27.
Zurück zum Zitat Fredman, D., et al. (1997). A low-power CMOS integrated circuit for field-powered radio frequency identification tags. In Proceedings of IEEE international solid-state circuits conference, pp. 294–295. Fredman, D., et al. (1997). A low-power CMOS integrated circuit for field-powered radio frequency identification tags. In Proceedings of IEEE international solid-state circuits conference, pp. 294–295.
28.
Zurück zum Zitat Masui, S., et al. (1999). A 13.56-MHz CMOS RF identification transponder integrated circuit with a dedicated CPU. In Proceedings of IEEE international solid-state circuits conference, pp. 162–163. Masui, S., et al. (1999). A 13.56-MHz CMOS RF identification transponder integrated circuit with a dedicated CPU. In Proceedings of IEEE international solid-state circuits conference, pp. 162–163.
29.
Zurück zum Zitat Umeda, T., et al. (2006). A 950-MHz rectifier circuit for sensor networks with 10 m-distance. IEEE Journal of Solid-State Circuits, 41(1), 35–41.CrossRef Umeda, T., et al. (2006). A 950-MHz rectifier circuit for sensor networks with 10 m-distance. IEEE Journal of Solid-State Circuits, 41(1), 35–41.CrossRef
30.
Zurück zum Zitat Nakamoto, H., et al. (2006). A passive UHF RFID tag LSI with 36.6% efficiency CMOS-only rectifier and current-mode demodulator in 0.35-m FeRAM technology. In Proceedings of IEEE international solid-state circuits conference, pp. 310–311. Nakamoto, H., et al. (2006). A passive UHF RFID tag LSI with 36.6% efficiency CMOS-only rectifier and current-mode demodulator in 0.35-m FeRAM technology. In Proceedings of IEEE international solid-state circuits conference, pp. 310–311.
31.
Zurück zum Zitat Akashe, S., et al. (2015). Enhanced power gating schemes for low leakage power and low ground bounce noise in design of ring oscillator. Journal of Wireless Personal Communications, 80(4), 1517–1533.CrossRef Akashe, S., et al. (2015). Enhanced power gating schemes for low leakage power and low ground bounce noise in design of ring oscillator. Journal of Wireless Personal Communications, 80(4), 1517–1533.CrossRef
32.
Zurück zum Zitat Ghovanloo, M., & Najafi, K. (2004). Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE Journal of Solid-State Circuits, 39(11), 1976–1984.CrossRef Ghovanloo, M., & Najafi, K. (2004). Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE Journal of Solid-State Circuits, 39(11), 1976–1984.CrossRef
33.
Zurück zum Zitat Lam, Y. H., Ki, W. H., & Tsui, C. Y. (2006). An integrated 1.8- to 3.3-V regulated voltage doubler using active diodes and dual-loop voltage follower for switch-capacitive load. In Proceedings of IEEE VLSI Circuits Symposium, June 2006, pp. 104–105. Lam, Y. H., Ki, W. H., & Tsui, C. Y. (2006). An integrated 1.8- to 3.3-V regulated voltage doubler using active diodes and dual-loop voltage follower for switch-capacitive load. In Proceedings of IEEE VLSI Circuits Symposium, June 2006, pp. 104–105.
34.
Zurück zum Zitat Weir, F., et al. (2009). Implantable myoelectric sensors (IMESs) for intra-muscular electromyogram recording. IEEE Transactions on Biomedical Engineering, 56(1), 159–171.CrossRef Weir, F., et al. (2009). Implantable myoelectric sensors (IMESs) for intra-muscular electromyogram recording. IEEE Transactions on Biomedical Engineering, 56(1), 159–171.CrossRef
35.
Zurück zum Zitat Gosselin, B., et al. (2009). A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Transactions on Biomedical Circuits and Systems, 3(3), 129–141.MathSciNetCrossRef Gosselin, B., et al. (2009). A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Transactions on Biomedical Circuits and Systems, 3(3), 129–141.MathSciNetCrossRef
36.
Zurück zum Zitat Nakamoto, H., et al. (2007). A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-um technology. IEEE Journal of Solid-State Circuits, 42(1), 101–110.CrossRef Nakamoto, H., et al. (2007). A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-um technology. IEEE Journal of Solid-State Circuits, 42(1), 101–110.CrossRef
37.
Zurück zum Zitat Liu, J., et al. (2008). Wireless RF identification system based on SAW. IEEE Transactions on Industrial Electronics, 55(2), 958–961.CrossRef Liu, J., et al. (2008). Wireless RF identification system based on SAW. IEEE Transactions on Industrial Electronics, 55(2), 958–961.CrossRef
38.
Zurück zum Zitat Yeager, D. J., et al. (2009). NeuralWISP: A wirelessly powered neural inter-face with 1-m range. IEEE Transactions on Biomedical Circuits and Systems, 3(6), 379–387.CrossRef Yeager, D. J., et al. (2009). NeuralWISP: A wirelessly powered neural inter-face with 1-m range. IEEE Transactions on Biomedical Circuits and Systems, 3(6), 379–387.CrossRef
39.
Zurück zum Zitat Song, Y. K., et al. (2009). Active microelectronic neurosensor arrays for implantable brain communication interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(4), 339–345.CrossRef Song, Y. K., et al. (2009). Active microelectronic neurosensor arrays for implantable brain communication interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(4), 339–345.CrossRef
40.
Zurück zum Zitat DeHennis, A. D., et al. (2005). A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity. IEEE Journal of Microelectromechanical Systems, 14(1), 12–22.CrossRef DeHennis, A. D., et al. (2005). A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity. IEEE Journal of Microelectromechanical Systems, 14(1), 12–22.CrossRef
41.
Zurück zum Zitat Shahrokhi, F., et al. (2010). The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Transactions on Biomedical Circuits and Systems, 4(3), 149–161.CrossRef Shahrokhi, F., et al. (2010). The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Transactions on Biomedical Circuits and Systems, 4(3), 149–161.CrossRef
42.
Zurück zum Zitat Kelly, S. K., et al. (2011). A power-efficient neural tissue stimulator with energy recovery. IEEE Transactions on Biomedical Circuits and Systems, 5(1), 20–29.CrossRef Kelly, S. K., et al. (2011). A power-efficient neural tissue stimulator with energy recovery. IEEE Transactions on Biomedical Circuits and Systems, 5(1), 20–29.CrossRef
43.
Zurück zum Zitat Ahmadi, M. M., et al. (2009). A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transactions on Biomedical Circuits and Systems, 3(3), 169–180.CrossRef Ahmadi, M. M., et al. (2009). A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transactions on Biomedical Circuits and Systems, 3(3), 169–180.CrossRef
44.
Zurück zum Zitat Ethier, S., et al. (2011). Exponential current pulse generator for efficient very high-impedance multisite stimulation. IEEE Transactions on Biomedical Circuits and Systems, 5(1), 30–38.CrossRef Ethier, S., et al. (2011). Exponential current pulse generator for efficient very high-impedance multisite stimulation. IEEE Transactions on Biomedical Circuits and Systems, 5(1), 30–38.CrossRef
45.
Zurück zum Zitat Simard, G., et al. (2010). High-speed OQPSK and efficient power transfer through inductive link for biomedical implants. IEEE Transactions on Biomedical Circuits and Systems, 4(3), 192–200.CrossRef Simard, G., et al. (2010). High-speed OQPSK and efficient power transfer through inductive link for biomedical implants. IEEE Transactions on Biomedical Circuits and Systems, 4(3), 192–200.CrossRef
Metadaten
Titel
An Innovative Design: MOS Based Full-Wave Centre-Tapped Rectifier
verfasst von
Prateek Jain
Shyam Akashe
Publikationsdatum
13.06.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2016
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3417-3

Weitere Artikel der Ausgabe 4/2016

Wireless Personal Communications 4/2016 Zur Ausgabe

Neuer Inhalt