Skip to main content
Erschienen in: Neural Computing and Applications 20/2020

08.11.2019 | Recent Advances in Deep Learning for Medical Image Processing

An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection

verfasst von: M. Attique Khan, Tallha Akram, Muhammad Sharif, Kashif Javed, Muhammad Rashid, Syed Ahmad Chan Bukhari

Erschienen in: Neural Computing and Applications | Ausgabe 20/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Malignant melanoma, not belongs to a common type of skin cancers but most serious because of its growth—affecting large number of people worldwide. Recent studies proclaimed that risk factors can be substantially reduced by making it almost treatable, if detected at its early stages. This timely detection and classification demand an automated system, though procedure is quite complex. In this article, a novel strategy is adopted, which not only diagnoses the skin cancer but also assigns a proper class label. The proposed technique is principally built on saliency valuation and the selection of most discriminant deep features selection. The lesion contrast is being enhanced using proposed Gaussian method, followed by color space transformation from RGB to HSV. The new color space facilitates the saliency map construction process, utilizing inner and outer disjoint windows, by making the foreground and background maximally differentiable. From the segmented images, deep features are extracted by utilizing inception CNN model on two basic output layers. These extracted set of features are later fused using proposed decision-controlled parallel fusion method, prior to feature selection using proposed window distance-controlled entropy features selection method. The most discriminant features are later subjected to classification step. To demonstrate the efficiency of the proposed methods, three freely available datasets are utilized such as PH2, ISBI 2016, and ISBI 2017 with achieve accuracy is 97.74%, 96.1%, and 97%, respectively. Simulation results clearly reveal the improved performance of proposed method on all three datasets compared to existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oliveira RB, Papa JP, Pereira AS, Tavares JMR (2018) Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 29:613–636CrossRef Oliveira RB, Papa JP, Pereira AS, Tavares JMR (2018) Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 29:613–636CrossRef
2.
Zurück zum Zitat Khan MA, Akram T, Sharif M, Shahzad A, Aurangzeb K, Alhussein M et al (2018) An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 18:638CrossRef Khan MA, Akram T, Sharif M, Shahzad A, Aurangzeb K, Alhussein M et al (2018) An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 18:638CrossRef
5.
Zurück zum Zitat Parkin D, Mesher D, Sasieni P (2011) 13. Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Br J Cancer 105:S66CrossRef Parkin D, Mesher D, Sasieni P (2011) 13. Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. Br J Cancer 105:S66CrossRef
6.
Zurück zum Zitat Nguyen AH, Detty SQ, Agrawal DK (2017) Clinical implications of high-mobility group box-1 (HMGB1) and the receptor for advanced glycation end-products (RAGE) in cutaneous malignancy: a systematic review. Anticancer Res 37:1–7CrossRef Nguyen AH, Detty SQ, Agrawal DK (2017) Clinical implications of high-mobility group box-1 (HMGB1) and the receptor for advanced glycation end-products (RAGE) in cutaneous malignancy: a systematic review. Anticancer Res 37:1–7CrossRef
8.
Zurück zum Zitat Nasir M, Attique Khan M, Sharif M, Lali IU, Saba T, Iqbal T (2018) An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 81:528–543CrossRef Nasir M, Attique Khan M, Sharif M, Lali IU, Saba T, Iqbal T (2018) An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 81:528–543CrossRef
9.
Zurück zum Zitat Whiteman DC, Green AC, Olsen CM (2016) The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Investig Dermatol 136:1161–1171CrossRef Whiteman DC, Green AC, Olsen CM (2016) The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Investig Dermatol 136:1161–1171CrossRef
10.
Zurück zum Zitat Ruela M, Barata C, Marques JS, Rozeira J (2017) A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Comput Methods Biomech Biomed Eng Imaging Vis 5:127–137CrossRef Ruela M, Barata C, Marques JS, Rozeira J (2017) A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Comput Methods Biomech Biomed Eng Imaging Vis 5:127–137CrossRef
11.
Zurück zum Zitat Satapathy SC, Fernandes SL, Lin H (2019) Stroke lesion segmentation and analysis using entropy/Otsu’s function—a study with social group optimization. Curr Bioinform 14:305–313CrossRef Satapathy SC, Fernandes SL, Lin H (2019) Stroke lesion segmentation and analysis using entropy/Otsu’s function—a study with social group optimization. Curr Bioinform 14:305–313CrossRef
12.
Zurück zum Zitat Saba T, Khan MA, Rehman A, Marie-Sainte SL (2019) Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 43:289CrossRef Saba T, Khan MA, Rehman A, Marie-Sainte SL (2019) Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 43:289CrossRef
13.
Zurück zum Zitat Liaqat A, Khan MA, Shah JH, Sharif M, Yasmin M, Fernandes SL (2018) Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. J Mech Med Biol 18:1850038CrossRef Liaqat A, Khan MA, Shah JH, Sharif M, Yasmin M, Fernandes SL (2018) Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. J Mech Med Biol 18:1850038CrossRef
14.
Zurück zum Zitat Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA (2019) A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl 29:1–12 Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA (2019) A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl 29:1–12
15.
Zurück zum Zitat Aurangzeb K, Haider I, Khan MA, Saba T, Javed K, Iqbal T et al (2019) Human behavior analysis based on multi-types features fusion and Von Nauman entropy based features reduction. J Med Imaging Health Inform 9:662–669CrossRef Aurangzeb K, Haider I, Khan MA, Saba T, Javed K, Iqbal T et al (2019) Human behavior analysis based on multi-types features fusion and Von Nauman entropy based features reduction. J Med Imaging Health Inform 9:662–669CrossRef
16.
Zurück zum Zitat Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297CrossRef Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297CrossRef
17.
Zurück zum Zitat Bokhari F, Syedia T, Sharif M, Yasmin M, Fernandes SL (2018) Fundus image segmentation and feature extraction for the detection of glaucoma: a new approach. Curr Med Imaging Rev 14:77–87CrossRef Bokhari F, Syedia T, Sharif M, Yasmin M, Fernandes SL (2018) Fundus image segmentation and feature extraction for the detection of glaucoma: a new approach. Curr Med Imaging Rev 14:77–87CrossRef
18.
Zurück zum Zitat Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ et al (2019) Automated detection of Alzheimer’s disease using brain MRI images—a study with various feature extraction techniques. J Med Syst 43:302CrossRef Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ et al (2019) Automated detection of Alzheimer’s disease using brain MRI images—a study with various feature extraction techniques. J Med Syst 43:302CrossRef
20.
Zurück zum Zitat Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A (2018) Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans Cybern 49:1–11 Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A (2018) Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans Cybern 49:1–11
21.
Zurück zum Zitat Zhang Y, Zhang H, Chen X, Liu M, Zhu X, Lee S-W et al (2019) Strength and similarity guided group-level brain functional network construction for MCI diagnosis. Pattern Recogn 88:421–430CrossRef Zhang Y, Zhang H, Chen X, Liu M, Zhu X, Lee S-W et al (2019) Strength and similarity guided group-level brain functional network construction for MCI diagnosis. Pattern Recogn 88:421–430CrossRef
22.
Zurück zum Zitat Jiao Y, Zhang Y, Wang Y, Wang B, Jin J, Wang X (2018) A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain–computer interface. Int J Neural Syst 28:1750039CrossRef Jiao Y, Zhang Y, Wang Y, Wang B, Jin J, Wang X (2018) A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain–computer interface. Int J Neural Syst 28:1750039CrossRef
24.
Zurück zum Zitat Fernandes SL, Chakraborty B, Gurupur VP, Prabhu G (2016) Early skin cancer detection using computer aided diagnosis techniques. J Integr Des Process Sci 20:33–43CrossRef Fernandes SL, Chakraborty B, Gurupur VP, Prabhu G (2016) Early skin cancer detection using computer aided diagnosis techniques. J Integr Des Process Sci 20:33–43CrossRef
25.
Zurück zum Zitat Khan MA, Akram T, Sharif M, Saba T, Javed K, Lali IU et al (2019) Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 82:741–763CrossRef Khan MA, Akram T, Sharif M, Saba T, Javed K, Lali IU et al (2019) Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 82:741–763CrossRef
27.
Zurück zum Zitat Khan MA, Javed MY, Sharif M, Saba T, Rehman A (2019) Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 international conference on computer and information sciences (ICCIS), pp 1–7 Khan MA, Javed MY, Sharif M, Saba T, Rehman A (2019) Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In: 2019 international conference on computer and information sciences (ICCIS), pp 1–7
28.
Zurück zum Zitat Chatterjee S, Dey D, Munshi S (2018) Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions. Biomed Signal Process Control 40:252–262CrossRef Chatterjee S, Dey D, Munshi S (2018) Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions. Biomed Signal Process Control 40:252–262CrossRef
29.
Zurück zum Zitat Codella NC, Nguyen Q-B, Pankanti S, Gutman D, Helba B, Halpern A et al (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61:5:1–5:15CrossRef Codella NC, Nguyen Q-B, Pankanti S, Gutman D, Helba B, Halpern A et al (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61:5:1–5:15CrossRef
30.
Zurück zum Zitat Goyal M, Yap MH (2017) Multi-class semantic segmentation of skin lesions via fully convolutional networks. Preprint arXiv:1711.10449 Goyal M, Yap MH (2017) Multi-class semantic segmentation of skin lesions via fully convolutional networks. Preprint arXiv:​1711.​10449
31.
Zurück zum Zitat Ross-Howe S, Tizhoosh H (2018) The effects of image pre-and post-processing, wavelet decomposition, and local binary patterns on U-nets for skin lesion segmentation. Preprint arXiv:1805.05239 Ross-Howe S, Tizhoosh H (2018) The effects of image pre-and post-processing, wavelet decomposition, and local binary patterns on U-nets for skin lesion segmentation. Preprint arXiv:​1805.​05239
32.
Zurück zum Zitat Sarker M, Kamal M, Rashwan HA, Banu SF, Saleh A, Singh VK et al (2018) SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks. Preprint arXiv:1805.10241 Sarker M, Kamal M, Rashwan HA, Banu SF, Saleh A, Singh VK et al (2018) SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks. Preprint arXiv:​1805.​10241
33.
Zurück zum Zitat Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED international conference on biomedical engineering (BioMed), pp 49–54 Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED international conference on biomedical engineering (BioMed), pp 49–54
34.
Zurück zum Zitat Kawahara J, BenTaieb A, Hamarneh G (2016) Deep features to classify skin lesions. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp 1397–1400 Kawahara J, BenTaieb A, Hamarneh G (2016) Deep features to classify skin lesions. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp 1397–1400
35.
Zurück zum Zitat Celebi ME, Zornberg A (2014) Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification. IEEE Syst J 8:980–984CrossRef Celebi ME, Zornberg A (2014) Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification. IEEE Syst J 8:980–984CrossRef
36.
Zurück zum Zitat Chen S, Wang Z, Shi J, Liu B, Yu N (2018) A multi-task framework with feature passing module for skin lesion classification and segmentation. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 1126–1129 Chen S, Wang Z, Shi J, Liu B, Yu N (2018) A multi-task framework with feature passing module for skin lesion classification and segmentation. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 1126–1129
38.
Zurück zum Zitat Klang E (2018) Deep learning and medical imaging. J Thorac Dis 10:1325CrossRef Klang E (2018) Deep learning and medical imaging. J Thorac Dis 10:1325CrossRef
39.
Zurück zum Zitat Naqi S, Sharif M, Yasmin M, Fernandes SL (2018) Lung nodule detection using polygon approximation and hybrid features from CT images. Curr Med Imaging Rev 14:108–117CrossRef Naqi S, Sharif M, Yasmin M, Fernandes SL (2018) Lung nodule detection using polygon approximation and hybrid features from CT images. Curr Med Imaging Rev 14:108–117CrossRef
40.
Zurück zum Zitat Raza M, Sharif M, Yasmin M, Khan MA, Saba T, Fernandes SL (2018) Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning. Future Gener Comput Syst 88:28–39CrossRef Raza M, Sharif M, Yasmin M, Khan MA, Saba T, Fernandes SL (2018) Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning. Future Gener Comput Syst 88:28–39CrossRef
41.
Zurück zum Zitat Khan MA, Akram T, Sharif M, Javed MY, Muhammad N, Yasmin M (2018) An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern Anal Appl 22:1–21 Khan MA, Akram T, Sharif M, Javed MY, Muhammad N, Yasmin M (2018) An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern Anal Appl 22:1–21
42.
Zurück zum Zitat Sharif M, Khan MA, Akram T, Javed MY, Saba T, Rehman A (2017) A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection. EURASIP J Image Video Process 2017:89CrossRef Sharif M, Khan MA, Akram T, Javed MY, Saba T, Rehman A (2017) A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection. EURASIP J Image Video Process 2017:89CrossRef
43.
Zurück zum Zitat Khan MA, Sharif M, Javed MY, Akram T, Yasmin M, Saba T (2017) License number plate recognition system using entropy-based features selection approach with SVM. IET Image Proc 12:200–209CrossRef Khan MA, Sharif M, Javed MY, Akram T, Yasmin M, Saba T (2017) License number plate recognition system using entropy-based features selection approach with SVM. IET Image Proc 12:200–209CrossRef
44.
Zurück zum Zitat Yang J, Yang J-Y, Zhang D, Lu J-F (2003) Feature fusion: parallel strategy vs. serial strategy. Pattern Recogn 36:1369–1381CrossRef Yang J, Yang J-Y, Zhang D, Lu J-F (2003) Feature fusion: parallel strategy vs. serial strategy. Pattern Recogn 36:1369–1381CrossRef
46.
Zurück zum Zitat Rashid M, Khan MA, Sharif M, Raza M, Sarfraz MM, Afza F (2019) Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features. Multimed Tools Appl 78:15751–15777CrossRef Rashid M, Khan MA, Sharif M, Raza M, Sarfraz MM, Afza F (2019) Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features. Multimed Tools Appl 78:15751–15777CrossRef
48.
Zurück zum Zitat Pathan S, Prabhu KG, Siddalingaswamy P (2018) Hair detection and lesion segmentation in dermoscopic images using domain knowledge. Med Biol Eng Comput 56:1–15CrossRef Pathan S, Prabhu KG, Siddalingaswamy P (2018) Hair detection and lesion segmentation in dermoscopic images using domain knowledge. Med Biol Eng Comput 56:1–15CrossRef
49.
Zurück zum Zitat Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A (2016) Skin lesion image segmentation using delaunay triangulation for melanoma detection. Comput Med Imaging Graph 52:89–103CrossRef Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A (2016) Skin lesion image segmentation using delaunay triangulation for melanoma detection. Comput Med Imaging Graph 52:89–103CrossRef
50.
Zurück zum Zitat Bi L, Kim J, Ahn E, Kumar A, Fulham M, Feng D (2017) Dermoscopic image segmentation via multi-stage fully convolutional networks. IEEE Trans Biomed Eng 64:2065–2074CrossRef Bi L, Kim J, Ahn E, Kumar A, Fulham M, Feng D (2017) Dermoscopic image segmentation via multi-stage fully convolutional networks. IEEE Trans Biomed Eng 64:2065–2074CrossRef
51.
Zurück zum Zitat Bozorgtabar B, Sedai S, Roy PK, Garnavi R (2017) Skin lesion segmentation using deep convolution networks guided by local unsupervised learning. IBM J Res Dev 61:6:1–6:8CrossRef Bozorgtabar B, Sedai S, Roy PK, Garnavi R (2017) Skin lesion segmentation using deep convolution networks guided by local unsupervised learning. IBM J Res Dev 61:6:1–6:8CrossRef
52.
Zurück zum Zitat Yang J, Xie F, Fan H, Jiang Z, Liu J (2018) Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access 6:65130–65138CrossRef Yang J, Xie F, Fan H, Jiang Z, Liu J (2018) Classification for dermoscopy images using convolutional neural networks based on region average pooling. IEEE Access 6:65130–65138CrossRef
53.
Zurück zum Zitat Harangi B (2018) Skin lesion classification with ensembles of deep convolutional neural networks. J Biomed Inform 86:25–32CrossRef Harangi B (2018) Skin lesion classification with ensembles of deep convolutional neural networks. J Biomed Inform 86:25–32CrossRef
54.
Zurück zum Zitat Oliveira RB, Pereira AS, Tavares JMR (2017) Skin lesion computational diagnosis of dermoscopic images: ensemble models based on input feature manipulation. Comput Methods Programs Biomed 149:43–53CrossRef Oliveira RB, Pereira AS, Tavares JMR (2017) Skin lesion computational diagnosis of dermoscopic images: ensemble models based on input feature manipulation. Comput Methods Programs Biomed 149:43–53CrossRef
55.
Zurück zum Zitat Yu L, Chen H, Dou Q, Qin J, Heng P-A (2017) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36:994–1004CrossRef Yu L, Chen H, Dou Q, Qin J, Heng P-A (2017) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36:994–1004CrossRef
57.
Zurück zum Zitat Maia LB, Lima A, Pereira RMP, Junior GB, de Almeida JDS, de Paiva AC (2018) Evaluation of melanoma diagnosis using deep features. In: 2018 25th international conference on systems, signals and image processing (IWSSIP), pp 1–4 Maia LB, Lima A, Pereira RMP, Junior GB, de Almeida JDS, de Paiva AC (2018) Evaluation of melanoma diagnosis using deep features. In: 2018 25th international conference on systems, signals and image processing (IWSSIP), pp 1–4
58.
Zurück zum Zitat Bi L, Kim J, Ahn E, Feng D, Fulham M (2016) Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp 1055–1058 Bi L, Kim J, Ahn E, Feng D, Fulham M (2016) Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp 1055–1058
Metadaten
Titel
An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection
verfasst von
M. Attique Khan
Tallha Akram
Muhammad Sharif
Kashif Javed
Muhammad Rashid
Syed Ahmad Chan Bukhari
Publikationsdatum
08.11.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 20/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04514-0

Weitere Artikel der Ausgabe 20/2020

Neural Computing and Applications 20/2020 Zur Ausgabe

S.I. : Applying Artificial Intelligence to the Internet of Things

A hybrid classifier combination for home automation using EEG signals

Premium Partner