Skip to main content

2021 | OriginalPaper | Buchkapitel

An Integrated Prediction Model for Building Energy Consumption: A Case Study

verfasst von : Ting Hu, Zhikun Ding

Erschienen in: Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a large energy consumer, the building sector accounts for 30–40% of energy consumption and around 40% of carbon emissions. How to improve energy efficiency in the building sector has become an urgent issue in urban sustainable development. Building energy prediction is a flexible and cost-efficient approach to improve energy efficiency. Green buildings can also improve energy efficiency but the energy saving is still lower than expected. Hence, is it is very important to improve the energy efficiency of green buildings. However, research on green building energy consumption prediction is not sufficient. To improve prediction accuracy, an integration model for energy consumption forecast was proposed. Data were collected from a green building for one year period in Shenzhen. Results showed that the proposed model had higher prediction accuracy, which validated the integration model. Meanwhile, the eight typical building operational patterns of energy consumption were identified according to the hour, month and day type. Model can be used to evaluate different design schemes and building operation strategies as well as real-time fault detection and diagnosis. The proposed model will improve the energy efficiency of green buildings; reduce building energy consumption and carbon emissions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ding, Z., Hu, T., Li, M., Xu, X., & Zou, P. X. W. (2019). Agent-based model for simulating building energy management in student residences. Energy and Buildings, 198, 11–27.CrossRef Ding, Z., Hu, T., Li, M., Xu, X., & Zou, P. X. W. (2019). Agent-based model for simulating building energy management in student residences. Energy and Buildings, 198, 11–27.CrossRef
2.
Zurück zum Zitat Chua, K. J., Chou, S. K., Yang, W. M., & Yan, J. (2013). Achieving better energy-efficient air conditioning—A review of technologies and strategies. Applied Energy, 104, 87–104.CrossRef Chua, K. J., Chou, S. K., Yang, W. M., & Yan, J. (2013). Achieving better energy-efficient air conditioning—A review of technologies and strategies. Applied Energy, 104, 87–104.CrossRef
3.
Zurück zum Zitat Zabalza Bribián, I., Valero Capilla, A., & Aranda, U. A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46, 1133–1140.CrossRef Zabalza Bribián, I., Valero Capilla, A., & Aranda, U. A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46, 1133–1140.CrossRef
4.
Zurück zum Zitat Sozer, H. (2010). Improving energy efficiency through the design of the building envelope. Building and Environment, 45, 2581–2593.CrossRef Sozer, H. (2010). Improving energy efficiency through the design of the building envelope. Building and Environment, 45, 2581–2593.CrossRef
5.
Zurück zum Zitat Besir, A. B., & Cuce, E. (2018). Green roofs and facades: A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 915–939.CrossRef Besir, A. B., & Cuce, E. (2018). Green roofs and facades: A comprehensive review. Renewable and Sustainable Energy Reviews, 82, 915–939.CrossRef
6.
Zurück zum Zitat Turner, C., & Frankel, M. J. T. A. (2008). University M. Green building performance evaluation: Measured results from LEED New Construction Buildings. Turner, C., & Frankel, M. J. T. A. (2008). University M. Green building performance evaluation: Measured results from LEED New Construction Buildings.
7.
Zurück zum Zitat Amasyali, K., & El-Gohary, N. M. (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, 81, 1192–1205.CrossRef Amasyali, K., & El-Gohary, N. M. (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, 81, 1192–1205.CrossRef
8.
Zurück zum Zitat Foucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288.CrossRef Foucquier, A., Robert, S., Suard, F., Stéphan, L., & Jay, A. (2013). State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23, 272–288.CrossRef
9.
Zurück zum Zitat Ham, Y., & Golparvar-Fard, M. (2013). EPAR: Energy performance augmented reality models for identification of building energy performance deviations between actual measurements and simulation results. Energy and Buildings, 63, 15–28.CrossRef Ham, Y., & Golparvar-Fard, M. (2013). EPAR: Energy performance augmented reality models for identification of building energy performance deviations between actual measurements and simulation results. Energy and Buildings, 63, 15–28.CrossRef
10.
Zurück zum Zitat Cavalheiro, J., & Carreira, P. (2016). A multidimensional data model design for building energy management. Advanced Engineering Informatics, 30, 619–632.CrossRef Cavalheiro, J., & Carreira, P. (2016). A multidimensional data model design for building energy management. Advanced Engineering Informatics, 30, 619–632.CrossRef
11.
Zurück zum Zitat Wei, Y., Zhang, X., Shi, Y., Xia, L., Pan, S., Wu, J., et al. (2018). A review of data-driven approaches for prediction and classification of building energy consumption. Renewable and Sustainable Energy Reviews, 82, 1027–1047.CrossRef Wei, Y., Zhang, X., Shi, Y., Xia, L., Pan, S., Wu, J., et al. (2018). A review of data-driven approaches for prediction and classification of building energy consumption. Renewable and Sustainable Energy Reviews, 82, 1027–1047.CrossRef
12.
Zurück zum Zitat Salmeron, J. L., Rahimi, S. A., Navali, A. M., & Sadeghpour, A. (2017). Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing, 232, 104–112.CrossRef Salmeron, J. L., Rahimi, S. A., Navali, A. M., & Sadeghpour, A. (2017). Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets. Neurocomputing, 232, 104–112.CrossRef
13.
Zurück zum Zitat Stramp, N., & Wilkerson, J. (2015). Legislative explorer: Data-driven discovery of lawmaking. PS: Political Science and Politics, 48, 115–119. Stramp, N., & Wilkerson, J. (2015). Legislative explorer: Data-driven discovery of lawmaking. PS: Political Science and Politics, 48, 115–119.
14.
Zurück zum Zitat Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P. P., Khan, S. U., et al. (2015). An overview of the commercial cloud monitoring tools: Research dimensions, design issues, and state-of-the-art. Computing, 97, 357–377.CrossRef Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P. P., Khan, S. U., et al. (2015). An overview of the commercial cloud monitoring tools: Research dimensions, design issues, and state-of-the-art. Computing, 97, 357–377.CrossRef
15.
Zurück zum Zitat Zhao, H.-X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16, 3586–3592. Zhao, H.-X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16, 3586–3592.
16.
Zurück zum Zitat Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2008). Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and Management, 49, 2272–2278.CrossRef Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2008). Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and Management, 49, 2272–2278.CrossRef
17.
Zurück zum Zitat Mohanraj, M., Jayaraj, S., & Muraleedharan, C. (2012). Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renewable and Sustainable Energy Reviews, 16, 1340–1358.CrossRef Mohanraj, M., Jayaraj, S., & Muraleedharan, C. (2012). Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renewable and Sustainable Energy Reviews, 16, 1340–1358.CrossRef
18.
Zurück zum Zitat Oh, M., & Kim, Y. (2019). Identifying urban geometric types as energy performance patterns. Energy for Sustainable Development, 48, 115–129.CrossRef Oh, M., & Kim, Y. (2019). Identifying urban geometric types as energy performance patterns. Energy for Sustainable Development, 48, 115–129.CrossRef
19.
Zurück zum Zitat Olofsson, T., & Mahlia, T. M. I. (2012). Modeling and simulation of the energy use in an occupied residential building in cold climate. Applied Energy, 91, 432–438.CrossRef Olofsson, T., & Mahlia, T. M. I. (2012). Modeling and simulation of the energy use in an occupied residential building in cold climate. Applied Energy, 91, 432–438.CrossRef
20.
Zurück zum Zitat Guo, J., Xie, Z., Qin, Y., Jia, L., & Wang, Y. (2019). Short-term abnormal passenger flow prediction based on the fusion of SVR and LSTM. IEEE Access, 7, 42946–42955.CrossRef Guo, J., Xie, Z., Qin, Y., Jia, L., & Wang, Y. (2019). Short-term abnormal passenger flow prediction based on the fusion of SVR and LSTM. IEEE Access, 7, 42946–42955.CrossRef
21.
Zurück zum Zitat Chen, Y., Xu, P., Chu, Y., Li, W., Wu, Y., Ni, L., et al. (2017). Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings. Applied Energy, 195, 659–670.CrossRef Chen, Y., Xu, P., Chu, Y., Li, W., Wu, Y., Ni, L., et al. (2017). Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings. Applied Energy, 195, 659–670.CrossRef
22.
Zurück zum Zitat Liu, Z., Wang, X., Zhang, Q., & Huang, C. (2019). Empirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding process. Measurement, 138, 314–324.CrossRef Liu, Z., Wang, X., Zhang, Q., & Huang, C. (2019). Empirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding process. Measurement, 138, 314–324.CrossRef
23.
Zurück zum Zitat Rasel, R. I., Sultana, N., Akther, S., & Haroon, A. (2019). Predicting electric energy use of a low energy house: A machine learning approach. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6. Rasel, R. I., Sultana, N., Akther, S., & Haroon, A. (2019). Predicting electric energy use of a low energy house: A machine learning approach. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6.
Metadaten
Titel
An Integrated Prediction Model for Building Energy Consumption: A Case Study
verfasst von
Ting Hu
Zhikun Ding
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-8892-1_116

Premium Partner