Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

13.05.2021

An Intelligent Centrality Measures for Influential Node Detection in COVID-19 Environment

verfasst von: J. Jeyasudha, G. Usha

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With an advent of social networks, spamming has posted the most important serious issues among the users. These are termed as influential users who spread the spam messages in the community which has created the social and psychological impact on the users. Hence the identification of such influential nodes has become the most important research challenge. The paper proposes with a method to (1) detect a community using community algorithms with the Laplacian Transition Matrix that is the popular hashtag (2) to find the Influential nodes or users in the Community using Intelligent centrality measure’s (3) The implementation of machine learning algorithm to classify the intensity of users.The extensive experimentations has been carried out using the COVID-19 datasets with the different machine learning algorithms. The methodologies SVM and PCA provide the accuracy of 98.6 than the linear regression for using the new centrality measures and the other scores like NMI, RMS, are found for the methods. As a result finding out the Influential nodes will help us find the Spammy and genuine accounts easily.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Freeman, L. C. (1979). Centrality in networks: I. conceptual clarification. Social Network., 1, 215–239CrossRef Freeman, L. C. (1979). Centrality in networks: I. conceptual clarification. Social Network., 1, 215–239CrossRef
2.
Zurück zum Zitat Katz, L. (1953). A new index derived from sociometric data analysis. Psychometrika, 18, 39–43CrossRefMATH Katz, L. (1953). A new index derived from sociometric data analysis. Psychometrika, 18, 39–43CrossRefMATH
3.
Zurück zum Zitat Hubbell, C. H. (1965). An input-output approach to clique identification. Sociometry, 28, 377–399CrossRef Hubbell, C. H. (1965). An input-output approach to clique identification. Sociometry, 28, 377–399CrossRef
4.
Zurück zum Zitat Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2, 113–120CrossRef Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2, 113–120CrossRef
5.
Zurück zum Zitat Bonchev, D. (2003). Complexity in chemistry, “introduction and fundamentals;” Taylor & Francis.CrossRefMATH Bonchev, D. (2003). Complexity in chemistry, “introduction and fundamentals;” Taylor & Francis.CrossRefMATH
6.
Zurück zum Zitat Zeng, A., & Zhang, C. J. (2013). Ranking spreaders by decomposing complex networks. Physics Letters A, 377, 1031–1035CrossRef Zeng, A., & Zhang, C. J. (2013). Ranking spreaders by decomposing complex networks. Physics Letters A, 377, 1031–1035CrossRef
7.
Zurück zum Zitat Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27, 55–71CrossRef Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27, 55–71CrossRef
8.
Zurück zum Zitat Estrada, E., & Rodríguez-Velázquez, J. A. (2005). Spectral measures of bipartivity in complex networks. Physical Review E, 72, 046105MathSciNetCrossRef Estrada, E., & Rodríguez-Velázquez, J. A. (2005). Spectral measures of bipartivity in complex networks. Physical Review E, 72, 046105MathSciNetCrossRef
9.
Zurück zum Zitat Newman, M. E. J. (2006). Scientific collaboration networks II shortest paths, weighted networks, and centrality. Physical Review E, 73, 039906CrossRef Newman, M. E. J. (2006). Scientific collaboration networks II shortest paths, weighted networks, and centrality. Physical Review E, 73, 039906CrossRef
10.
Zurück zum Zitat Du, Y., Gao, C., Hu, Y., Mahadevan, S., & Deng, Y. (2014). A new method of identifying influential nodes in complex networks based on topsis. Physica A: Statistical Mechanics and its Applications, 399, 57–69CrossRef Du, Y., Gao, C., Hu, Y., Mahadevan, S., & Deng, Y. (2014). A new method of identifying influential nodes in complex networks based on topsis. Physica A: Statistical Mechanics and its Applications, 399, 57–69CrossRef
11.
Zurück zum Zitat Gao, C., Wei, D., Hu, Y., Mahadevan, S., & Deng, Y. (2013). A modified evidential methodology of identifying influential nodes in weighted networks. Physica A: Statistical Mechanics and its Applications, 392, 5490–5500MathSciNetCrossRefMATH Gao, C., Wei, D., Hu, Y., Mahadevan, S., & Deng, Y. (2013). A modified evidential methodology of identifying influential nodes in weighted networks. Physica A: Statistical Mechanics and its Applications, 392, 5490–5500MathSciNetCrossRefMATH
12.
Zurück zum Zitat Lü, L., Zhou, T., Zhang, Q. M., & Stanley, H. E. (2016). The H-index of a network node and its relation to degree and Coreness. Nature Communications, 7, 10168CrossRef Lü, L., Zhou, T., Zhang, Q. M., & Stanley, H. E. (2016). The H-index of a network node and its relation to degree and Coreness. Nature Communications, 7, 10168CrossRef
13.
Zurück zum Zitat Michelle, G., & Newman, M. E. J. (2002). “Community structure in social and biological networks” 2001. Proceedings National Academy of Science USA, 99(12), 7821–7826MATH Michelle, G., & Newman, M. E. J. (2002). “Community structure in social and biological networks” 2001. Proceedings National Academy of Science USA, 99(12), 7821–7826MATH
16.
Zurück zum Zitat Langville, A. N., & Meyer, C. D. (2011). “Google’s pagerank and beyond: The science of search engine rankings;” Princeton University Press.MATH Langville, A. N., & Meyer, C. D. (2011). “Google’s pagerank and beyond: The science of search engine rankings;” Princeton University Press.MATH
17.
18.
Zurück zum Zitat Gomez, D., González-Arangüena, E., Manuel, C., Owen, G., Pozo, M. D., & Tejada, J. (2003). Centrality and power in social networks: A game theoretic approach. Mathematical Social Sciences, 46, 27–54MathSciNetCrossRefMATH Gomez, D., González-Arangüena, E., Manuel, C., Owen, G., Pozo, M. D., & Tejada, J. (2003). Centrality and power in social networks: A game theoretic approach. Mathematical Social Sciences, 46, 27–54MathSciNetCrossRefMATH
20.
Zurück zum Zitat Chen, D. B., Gao, H., Lü, L., & Zhou, T. (2013). Identifying influential nodes in large-scale directed networks: The role of clustering. PLoS ONE, 8, e77455CrossRef Chen, D. B., Gao, H., Lü, L., & Zhou, T. (2013). Identifying influential nodes in large-scale directed networks: The role of clustering. PLoS ONE, 8, e77455CrossRef
21.
Zurück zum Zitat Peng, S., Yang, A., Cao, L., Yu, S., & Xie, D. (2017). Social influence modeling using information theory in mobile social networks. Information Sciences, 379, 146–159CrossRef Peng, S., Yang, A., Cao, L., Yu, S., & Xie, D. (2017). Social influence modeling using information theory in mobile social networks. Information Sciences, 379, 146–159CrossRef
22.
Zurück zum Zitat Pei, S., Muchnik, L., Andrade, J. S., Jr., Zheng, Z., & Makse, H. A. (2014). Searching for superspreaders of information in real-world social media. Science and Reports, 4, 5547CrossRef Pei, S., Muchnik, L., Andrade, J. S., Jr., Zheng, Z., & Makse, H. A. (2014). Searching for superspreaders of information in real-world social media. Science and Reports, 4, 5547CrossRef
23.
Zurück zum Zitat Li, Q., Zhou, T., Lü, L., & Chen, D. (2014). Identifying influential spreaders by weighted leaderrank. Physica A: Statistical Mechanics and its Applications, 404, 47–55MathSciNetCrossRefMATH Li, Q., Zhou, T., Lü, L., & Chen, D. (2014). Identifying influential spreaders by weighted leaderrank. Physica A: Statistical Mechanics and its Applications, 404, 47–55MathSciNetCrossRefMATH
24.
Zurück zum Zitat Zhao, X. Y., Huang, B., Tang, M., Zhang, H. F., & Chen, D. B. (2014). Identifying effective multiple spreaders by coloring complex networks. EPL, 108, 6CrossRef Zhao, X. Y., Huang, B., Tang, M., Zhang, H. F., & Chen, D. B. (2014). Identifying effective multiple spreaders by coloring complex networks. EPL, 108, 6CrossRef
25.
Zurück zum Zitat Min, B., Liljeros, F., & Makse, H. A. (2015). Finding influential spreaders from human activity beyond network location. PLoS ONE, 10, e0136831CrossRef Min, B., Liljeros, F., & Makse, H. A. (2015). Finding influential spreaders from human activity beyond network location. PLoS ONE, 10, e0136831CrossRef
26.
Zurück zum Zitat Lü, L., Pan, L., Zhou, T., Zhang, Y. C., & Stanley, H. E. (2015). Toward link predictability of complex networks. Proceedings of the National academy of Sciences of the United States of America, 112, 2325–2330MathSciNetCrossRefMATH Lü, L., Pan, L., Zhou, T., Zhang, Y. C., & Stanley, H. E. (2015). Toward link predictability of complex networks. Proceedings of the National academy of Sciences of the United States of America, 112, 2325–2330MathSciNetCrossRefMATH
27.
Zurück zum Zitat Morone, F., & Makse, H. (2015). Influence maximization in complex networks through optimal percolation. Nature, 527, 544CrossRef Morone, F., & Makse, H. (2015). Influence maximization in complex networks through optimal percolation. Nature, 527, 544CrossRef
28.
Zurück zum Zitat Mowshowitz, A. (1968). Entropy and the complexity of graphs. II. The information content of digraphs and infinite graphs. The Bulletin of Mathematical Biophysics, 30, 225–240MathSciNetCrossRefMATH Mowshowitz, A. (1968). Entropy and the complexity of graphs. II. The information content of digraphs and infinite graphs. The Bulletin of Mathematical Biophysics, 30, 225–240MathSciNetCrossRefMATH
29.
Zurück zum Zitat Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80, 045102CrossRef Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80, 045102CrossRef
30.
Zurück zum Zitat Fei, L., & Deng, Y. (2017). A new method to identify influential nodes based on relative entropy. Chaos, Solitons & Fractals, 104, 257–267CrossRef Fei, L., & Deng, Y. (2017). A new method to identify influential nodes based on relative entropy. Chaos, Solitons & Fractals, 104, 257–267CrossRef
33.
Zurück zum Zitat Yanqiu Z ; Ming N ; Chengwu Z ; Shuang L ; Sheng F ; Ruijie L,” Research and Application of AdaBoost Algorithm Based on SVM”, 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Yanqiu Z ; Ming N ; Chengwu Z ; Shuang L ; Sheng F ; Ruijie L,” Research and Application of AdaBoost Algorithm Based on SVM”, 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC).
34.
Zurück zum Zitat Fagui, L., Muqing, C., Liangming, W., & Yunsheng, L. (2019). An ensemble model based on adaptive noise reducer and over fitting prevention LSTM for multivariate time series forecasting”. IEEE Access, 7, 26102–26115CrossRef Fagui, L., Muqing, C., Liangming, W., & Yunsheng, L. (2019). An ensemble model based on adaptive noise reducer and over fitting prevention LSTM for multivariate time series forecasting”. IEEE Access, 7, 26102–26115CrossRef
Metadaten
Titel
An Intelligent Centrality Measures for Influential Node Detection in COVID-19 Environment
verfasst von
J. Jeyasudha
G. Usha
Publikationsdatum
13.05.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08577-y

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe