Skip to main content
Erschienen in: Wireless Personal Communications 3/2018

18.04.2018

An Investigation of Massive Gain in Hybrid Configurable Cylindrical Dielectric Resonator Antenna

verfasst von: Mahender Singh, R. S. Yaduvanshi, Arti Vaish

Erschienen in: Wireless Personal Communications | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article a high gain of two layer cylindrical dielectric resonator antenna fed through coaxial probe is projected and developed and conjointly offer complete implementation of superstrate dielectric resonator antenna on patch. The hybrid structure is operated under controlled electric field and magnetic field. The design is loaded with superstrate. The results on reflection coefficient S11, Gain of assorted stages of antenna design are simulated victimisation high frequency structured simulator and conferred. High permittivity material is used as a fluid inside the cylindrical resonator. The resonant frequency of the antenna can be modified by ever-changing the dielectric constant of fluid. It has been investigated that use of superstrate increases antenna gain from by varied biasing voltage reconfigurability are often obtained. The measured gain found to be 11dBi. Reconfigurability is the key parameter during this work a completely unique cylindrical stacked dielectric resonator antenna of high gain with band is presented for Wi-Fi, Wi-max and WLAN communications. The concept becomes compatible with patch antennas for high Gain applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Petosa, A. (2007). Dielectric resonator antenna handbook. Norwood: Artech House Inc. Petosa, A. (2007). Dielectric resonator antenna handbook. Norwood: Artech House Inc.
2.
Zurück zum Zitat Guha, D., Banerjee, A., & Antar, Y. M. M. (2010). New radiating mode in a cylindrical DRA to produce broadside high gain radiation. In Antennas and propagation society international symposium (APSURSI), 2010 IEEE, IEEE. Guha, D., Banerjee, A., & Antar, Y. M. M. (2010). New radiating mode in a cylindrical DRA to produce broadside high gain radiation. In Antennas and propagation society international symposium (APSURSI), 2010 IEEE, IEEE.
3.
Zurück zum Zitat Khalily, M., Rahim, M. K. A., & Kishk, A. A. (2011). Bandwidth enhancement and radiation characteristics improvement of rectangular dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 10, 393–395.CrossRef Khalily, M., Rahim, M. K. A., & Kishk, A. A. (2011). Bandwidth enhancement and radiation characteristics improvement of rectangular dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 10, 393–395.CrossRef
4.
Zurück zum Zitat Chang, T.-H., & Kiang, J.-F. (2009). Bandwidth broadening of dielectric resonator antenna by merging adjacent bands. IEEE Transactions on Antennas and Propagation, 57(10), 3316–3320.CrossRef Chang, T.-H., & Kiang, J.-F. (2009). Bandwidth broadening of dielectric resonator antenna by merging adjacent bands. IEEE Transactions on Antennas and Propagation, 57(10), 3316–3320.CrossRef
5.
Zurück zum Zitat Petosa, A., et al. (1998). Recent advances in dielectric-resonator antenna technology. IEEE Antennas and Propagation Magazine, 40(3), 35–48.CrossRef Petosa, A., et al. (1998). Recent advances in dielectric-resonator antenna technology. IEEE Antennas and Propagation Magazine, 40(3), 35–48.CrossRef
6.
Zurück zum Zitat Kishk, A. A., Zunoubi, M. R., & Kajfez, D. (1993). A numerical study of a dielectric disk antenna above grounded dielectric substrate. IEEE Transactions on Antennas and Propagation, 41(6), 813–821.CrossRef Kishk, A. A., Zunoubi, M. R., & Kajfez, D. (1993). A numerical study of a dielectric disk antenna above grounded dielectric substrate. IEEE Transactions on Antennas and Propagation, 41(6), 813–821.CrossRef
7.
Zurück zum Zitat Long, S., McAllister, M., & Shen, L. (1983). The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation, 31(3), 406–412.CrossRef Long, S., McAllister, M., & Shen, L. (1983). The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation, 31(3), 406–412.CrossRef
8.
Zurück zum Zitat Kranenburg, R. A., & Long, S. A. (1988). Microstrip transmission line excitation of dielectric resonator antennas. Electronics Letters, 24(18), 1156–1157.CrossRef Kranenburg, R. A., & Long, S. A. (1988). Microstrip transmission line excitation of dielectric resonator antennas. Electronics Letters, 24(18), 1156–1157.CrossRef
9.
Zurück zum Zitat Leung, K. W., et al. (1997). Low-profile circular disk DR antenna of very high permittivity excited by a microstripline. Electronics Letters, 33(12), 1004–1005.CrossRef Leung, K. W., et al. (1997). Low-profile circular disk DR antenna of very high permittivity excited by a microstripline. Electronics Letters, 33(12), 1004–1005.CrossRef
10.
Zurück zum Zitat Petosa, A., et al. (1995). Design of microstrip-fed series array of dielectric resonator antennas. Electronics Letters, 31(16), 1306–1307.CrossRef Petosa, A., et al. (1995). Design of microstrip-fed series array of dielectric resonator antennas. Electronics Letters, 31(16), 1306–1307.CrossRef
11.
Zurück zum Zitat Kranenburg, R. A., Long, S. A., & Williams, J. T. (1991). Coplanar waveguide excitation of dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 39(1), 119–122.CrossRef Kranenburg, R. A., Long, S. A., & Williams, J. T. (1991). Coplanar waveguide excitation of dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 39(1), 119–122.CrossRef
12.
Zurück zum Zitat Martin, J. T. H. St, et al. (1990). Dielectric resonator antenna using aperture coupling. Electronics Letters, 26(24), 2015–2016.CrossRef Martin, J. T. H. St, et al. (1990). Dielectric resonator antenna using aperture coupling. Electronics Letters, 26(24), 2015–2016.CrossRef
13.
Zurück zum Zitat Kishk, A. A., et al. (1995). Slot excitation of the dielectric disk radiator. IEEE Transactions on Antennas and Propagation, 43(2), 198–201.MathSciNetCrossRef Kishk, A. A., et al. (1995). Slot excitation of the dielectric disk radiator. IEEE Transactions on Antennas and Propagation, 43(2), 198–201.MathSciNetCrossRef
14.
Zurück zum Zitat Leung, K. W., et al. (1993). Input impedance of aperture coupled hemispherical dielectric resonator antenna. Electronics Letters, 29(13), 1165–1167.CrossRef Leung, K. W., et al. (1993). Input impedance of aperture coupled hemispherical dielectric resonator antenna. Electronics Letters, 29(13), 1165–1167.CrossRef
15.
Zurück zum Zitat Leung, K. W., et al. (2002). High-permittivity dielectric resonator antenna excited by a rectangular waveguide. Microwave and Optical Technology Letters, 34(3), 157–158.CrossRef Leung, K. W., et al. (2002). High-permittivity dielectric resonator antenna excited by a rectangular waveguide. Microwave and Optical Technology Letters, 34(3), 157–158.CrossRef
16.
Zurück zum Zitat Eshrah, I. A., et al. (2005). Excitation of dielectric resonator antennas by a waveguide probe: Modeling technique and wide-band design. IEEE Transactions on Antennas and Propagation, 53(3), 1028–1037.CrossRef Eshrah, I. A., et al. (2005). Excitation of dielectric resonator antennas by a waveguide probe: Modeling technique and wide-band design. IEEE Transactions on Antennas and Propagation, 53(3), 1028–1037.CrossRef
17.
Zurück zum Zitat Eshrah, I. A., et al. (2005). Theory and implementation of dielectric resonator antenna excited by a waveguide slot. IEEE Transactions on Antennas and Propagation, 53(1), 483–494.CrossRef Eshrah, I. A., et al. (2005). Theory and implementation of dielectric resonator antenna excited by a waveguide slot. IEEE Transactions on Antennas and Propagation, 53(1), 483–494.CrossRef
18.
Zurück zum Zitat Kishk, A. A., Ahn, B., & Kajfez, D. (1989). Broadband stacked dielectric resonator antennas. Electronics Letters, 25(18), 1232–1233.CrossRef Kishk, A. A., Ahn, B., & Kajfez, D. (1989). Broadband stacked dielectric resonator antennas. Electronics Letters, 25(18), 1232–1233.CrossRef
19.
Zurück zum Zitat Fan, Z., & Antar, Y. M. M. (1997). Slot-coupled DR antenna for dual-frequency operation. IEEE Transactions on Antennas and Propagation, 45(2), 306–308.CrossRef Fan, Z., & Antar, Y. M. M. (1997). Slot-coupled DR antenna for dual-frequency operation. IEEE Transactions on Antennas and Propagation, 45(2), 306–308.CrossRef
20.
Zurück zum Zitat Sangiovanni, A., Dauvignac, J. Y., & Pichot, C. (1998). Stacked dielectric resonator antenna for multifrequency operation. Microwave and Optical Technology Letters, 18(4), 303–306.CrossRef Sangiovanni, A., Dauvignac, J. Y., & Pichot, C. (1998). Stacked dielectric resonator antenna for multifrequency operation. Microwave and Optical Technology Letters, 18(4), 303–306.CrossRef
21.
Zurück zum Zitat Marqués, R., Mesa, F., & Medina, F. (2003). Theory of magnetoelectric multiconductor transmission lines with application to chiral and gyrotropic lines. Microwave and Optical Technology Letters, 38(1), 3–9.CrossRef Marqués, R., Mesa, F., & Medina, F. (2003). Theory of magnetoelectric multiconductor transmission lines with application to chiral and gyrotropic lines. Microwave and Optical Technology Letters, 38(1), 3–9.CrossRef
22.
Zurück zum Zitat Sung, Y., Ahn, C. S., & Kim, Y.-S. (2004). Microstripline fed dual-frequency dielectric resonator antenna. Microwave and Optical Technology Letters, 42(5), 388–390.CrossRef Sung, Y., Ahn, C. S., & Kim, Y.-S. (2004). Microstripline fed dual-frequency dielectric resonator antenna. Microwave and Optical Technology Letters, 42(5), 388–390.CrossRef
23.
Zurück zum Zitat Singh, M., et al. (2016). Design of rectangular dielectric resonator antenna using offset micro-strip feed for satellite application. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE. Singh, M., et al. (2016). Design of rectangular dielectric resonator antenna using offset micro-strip feed for satellite application. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE.
24.
Zurück zum Zitat Paul, B., et al. (2004). A compact very-high-permittivity dielectric-eye resonator antenna for multiband wireless applications. Microwave and Optical Technology Letters, 43(2), 118–121.MathSciNetCrossRef Paul, B., et al. (2004). A compact very-high-permittivity dielectric-eye resonator antenna for multiband wireless applications. Microwave and Optical Technology Letters, 43(2), 118–121.MathSciNetCrossRef
25.
Zurück zum Zitat Rao, Q. (2004). Hybrid dielectric resonator antennas with radiating slot for dual-frequency operation. IEEE Antennas and Wireless Propagation Letters, 3(1), 321–323.MathSciNet Rao, Q. (2004). Hybrid dielectric resonator antennas with radiating slot for dual-frequency operation. IEEE Antennas and Wireless Propagation Letters, 3(1), 321–323.MathSciNet
26.
Zurück zum Zitat Singh, S., Singh, P., & Singh, M. (2016). Design and advances of cylindrical dielectric resonator antenna—A review. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE. Singh, S., Singh, P., & Singh, M. (2016). Design and advances of cylindrical dielectric resonator antenna—A review. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE.
27.
Zurück zum Zitat Rao, Q., Denidni, T. A., & Sebak, A. R. (2005). A hybrid resonator antenna suitable for wireless communication applications at 1.9 and 2.45 GHz. IEEE Antennas and Wireless Propagation Letters, 4(1), 341–343. Rao, Q., Denidni, T. A., & Sebak, A. R. (2005). A hybrid resonator antenna suitable for wireless communication applications at 1.9 and 2.45 GHz. IEEE Antennas and Wireless Propagation Letters, 4(1), 341–343.
28.
Zurück zum Zitat Gautam, A. K., & Singh, M. (2016). Design of gain enhanced stacked rectangular dielectric resonator antenna for C-band applications. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE. Gautam, A. K., & Singh, M. (2016). Design of gain enhanced stacked rectangular dielectric resonator antenna for C-band applications. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE.
29.
Zurück zum Zitat Rao, Q., et al. (2006). Compact independent dual-band hybrid resonator antenna with multifunctional beams. IEEE Antennas and Wireless Propagation Letters, 5(1), 239–242.MathSciNetCrossRef Rao, Q., et al. (2006). Compact independent dual-band hybrid resonator antenna with multifunctional beams. IEEE Antennas and Wireless Propagation Letters, 5(1), 239–242.MathSciNetCrossRef
30.
Zurück zum Zitat Lin, Y.-F., et al. (2006). A miniature dielectric loaded monopole antenna for 2.4/5 GHz WLAN applications. IEEE Microwave and Wireless Components Letters, 16(11), 591–593.CrossRef Lin, Y.-F., et al. (2006). A miniature dielectric loaded monopole antenna for 2.4/5 GHz WLAN applications. IEEE Microwave and Wireless Components Letters, 16(11), 591–593.CrossRef
31.
Zurück zum Zitat Singh, M., et al. (2017). An investigation of resonant modes in rectangular dielectric resonator antenna using transcendental equation. Wireless Personal Communications, 95(3), 2549–2559.CrossRef Singh, M., et al. (2017). An investigation of resonant modes in rectangular dielectric resonator antenna using transcendental equation. Wireless Personal Communications, 95(3), 2549–2559.CrossRef
32.
Zurück zum Zitat Singh, M., Yaduvanshi, R. S., & Vaish, A. (2015). Design for enhancing gain in multimodal cylindrical dielectric resonator antenna. In India conference (INDICON), 2015 Annual IEEE, IEEE. Singh, M., Yaduvanshi, R. S., & Vaish, A. (2015). Design for enhancing gain in multimodal cylindrical dielectric resonator antenna. In India conference (INDICON), 2015 Annual IEEE, IEEE.
33.
Zurück zum Zitat Yaduvanshi, R. S., et al. (2012). Fluid frame magneto-hydrodynamic antenna. In 2012 International conference on communication systems and network technologies (CSNT), IEEE. Yaduvanshi, R. S., et al. (2012). Fluid frame magneto-hydrodynamic antenna. In 2012 International conference on communication systems and network technologies (CSNT), IEEE.
34.
Zurück zum Zitat Bist, S., & Yaduvanshi, R. S. (2013). Investigations into hybrid magneto-hydrodynamic (MHD) antenna. International Journal of Computers & Technology, 4(2b2), 454–459.CrossRef Bist, S., & Yaduvanshi, R. S. (2013). Investigations into hybrid magneto-hydrodynamic (MHD) antenna. International Journal of Computers & Technology, 4(2b2), 454–459.CrossRef
35.
Zurück zum Zitat Sahu, B., et al. (2013). Stacked cylindrical dielectric resonator antenna with metamaterial as a superstrate for enhancing the bandwidth and gain. In 2013 IEEE international conference on signal processing, computing and control (ISPCC), IEEE. Sahu, B., et al. (2013). Stacked cylindrical dielectric resonator antenna with metamaterial as a superstrate for enhancing the bandwidth and gain. In 2013 IEEE international conference on signal processing, computing and control (ISPCC), IEEE.
36.
Zurück zum Zitat Al Salameh, M. S., Antar, Y. M. M., & Seguin, G. (2002). Coplanar-waveguide-fed slot-coupled rectangular dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 50(10), 1415–1419.CrossRef Al Salameh, M. S., Antar, Y. M. M., & Seguin, G. (2002). Coplanar-waveguide-fed slot-coupled rectangular dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 50(10), 1415–1419.CrossRef
Metadaten
Titel
An Investigation of Massive Gain in Hybrid Configurable Cylindrical Dielectric Resonator Antenna
verfasst von
Mahender Singh
R. S. Yaduvanshi
Arti Vaish
Publikationsdatum
18.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5760-z

Weitere Artikel der Ausgabe 3/2018

Wireless Personal Communications 3/2018 Zur Ausgabe

Neuer Inhalt