Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2021

12.07.2021

An Investigation on the Anisotropic Plastic Behavior and Forming Limits of an Al-Mg-Li Alloy Sheet

verfasst von: Yubao Wang, Cunsheng Zhang, Yinghao Wang, Guoqun Zhao, Liang Chen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For the Al-Mg-Li alloy sheet with significant anisotropy, the uniaxial and cruciform biaxial tension tests and the Nakazima test are firstly performed to systematically determine the mechanical properties (including strength coefficient, strain hardening exponent, normal anisotropy coefficient, experimental yielding points and forming limits) of this sheet. Afterward, the widely used Hill’s 48 and Yld2000-2d yield criteria are, respectively, identified to describe the yield locus of this sheet and compared with the experimental yielding points. Comparison shows that the identified Yld2000-2d yield function provides a better description of the yield locus for the Al-Mg-Li alloy sheet. Finally, the forming limits of this sheet are predicted by the modified M-K (Marciniak–Kuczyński) model with the Yld2000-2d yield criterion identified in this work. The results show that the predicted forming limits correspond well with the experimental ones within the whole range of strain paths.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Xiao, Z. Lu, K. Zhang, S. Jiang and C. Shi,Achieving Outstanding Combination of Strength and Ductility of the Al-Mg-Li Alloy by Cold Rolling Combined with Electropulsing Assisted Treatment, Mater. Des, 2020, 186, p 108279.CrossRef H. Xiao, Z. Lu, K. Zhang, S. Jiang and C. Shi,Achieving Outstanding Combination of Strength and Ductility of the Al-Mg-Li Alloy by Cold Rolling Combined with Electropulsing Assisted Treatment, Mater. Des, 2020, 186, p 108279.CrossRef
2.
Zurück zum Zitat A.A. El-Aty, Y. Xu, S. Zhang, Y. Ma and D. Chen, Experimental Investigation of Tensile Properties and Anisotropy Of 1420, 8090 and 2060 Al-Li Alloys Sheet Undergoing Different Strain Rates and Fibre Orientation: a Comparative Study, Procedia Eng., 2017, 207, p 13–18.CrossRef A.A. El-Aty, Y. Xu, S. Zhang, Y. Ma and D. Chen, Experimental Investigation of Tensile Properties and Anisotropy Of 1420, 8090 and 2060 Al-Li Alloys Sheet Undergoing Different Strain Rates and Fibre Orientation: a Comparative Study, Procedia Eng., 2017, 207, p 13–18.CrossRef
3.
Zurück zum Zitat Y. Jin and H. Yu, Superior Mechanical Properties and Microstructual Evolution of 2195–T6 Al-Li Alloys at a High Strain Rate, Mater. Sci. Eng. A, 2021, 816, p 141314.CrossRef Y. Jin and H. Yu, Superior Mechanical Properties and Microstructual Evolution of 2195–T6 Al-Li Alloys at a High Strain Rate, Mater. Sci. Eng. A, 2021, 816, p 141314.CrossRef
4.
Zurück zum Zitat R.J. Rioja and R.H. Graham, Al-Li Alloys Find Their Niche, Adv. Mater. Process., 1992, 141, p 23–26. R.J. Rioja and R.H. Graham, Al-Li Alloys Find Their Niche, Adv. Mater. Process., 1992, 141, p 23–26.
5.
Zurück zum Zitat A. Deschamps, C. Sigli, T. Mourey, F. de Geuser, W. Lefebvre and B. Davo, Experimental and Modelling Assessment of Precipitation Kinetics in an Al-Li-Mg alloy, Acta Mater., 2012, 60(9), p 1917–1928.CrossRef A. Deschamps, C. Sigli, T. Mourey, F. de Geuser, W. Lefebvre and B. Davo, Experimental and Modelling Assessment of Precipitation Kinetics in an Al-Li-Mg alloy, Acta Mater., 2012, 60(9), p 1917–1928.CrossRef
6.
Zurück zum Zitat L.B. Khokhlatova, N.I. Kolobnev, M.S. Oglodkov and E.D. Mikhaylov, Aluminum-Lithium Alloys for Aircraft Building, Metallurgist, 2012, 56, p 336–341.CrossRef L.B. Khokhlatova, N.I. Kolobnev, M.S. Oglodkov and E.D. Mikhaylov, Aluminum-Lithium Alloys for Aircraft Building, Metallurgist, 2012, 56, p 336–341.CrossRef
7.
Zurück zum Zitat R.J. Rioja and J. Liu, The Evolution of Al-Li Base Products for Aerospace and Space Applications, Metall. Mater. Trans. A, 2012, 43, p 3325–3337.CrossRef R.J. Rioja and J. Liu, The Evolution of Al-Li Base Products for Aerospace and Space Applications, Metall. Mater. Trans. A, 2012, 43, p 3325–3337.CrossRef
8.
Zurück zum Zitat S.H. Choi and F. Barlat, Prediction of Macroscopic Anisotropy in Rolled Aluminum-Lithium Sheet, Scripta Mater., 1999, 41, p 981–987.CrossRef S.H. Choi and F. Barlat, Prediction of Macroscopic Anisotropy in Rolled Aluminum-Lithium Sheet, Scripta Mater., 1999, 41, p 981–987.CrossRef
9.
Zurück zum Zitat S.Y. Betsofen, V.V. Antipov and M.I. Knyazev, Al-Cu-Li and Al-Mg-Li Alloys: Phase Composition, Texture, and Anisotropy of Mechanical Properties (Review), Russ. Metall. (Metally), 2016, 4, p 326–341.CrossRef S.Y. Betsofen, V.V. Antipov and M.I. Knyazev, Al-Cu-Li and Al-Mg-Li Alloys: Phase Composition, Texture, and Anisotropy of Mechanical Properties (Review), Russ. Metall. (Metally), 2016, 4, p 326–341.CrossRef
10.
Zurück zum Zitat A.A. El-Aty, Y. Xu, X. Guo, S. Zhang, Y. Ma and D. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.CrossRef A.A. El-Aty, Y. Xu, X. Guo, S. Zhang, Y. Ma and D. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.CrossRef
11.
Zurück zum Zitat T.Z. Zhao, L. Jin, Y. Xu and S.H. Zhang, Anisotropic Yielding Stress of 2198 Al-Li Alloy Sheet and Mechanisms, Mat. Sci. Eng. A, 2020, 771, p 138572.CrossRef T.Z. Zhao, L. Jin, Y. Xu and S.H. Zhang, Anisotropic Yielding Stress of 2198 Al-Li Alloy Sheet and Mechanisms, Mat. Sci. Eng. A, 2020, 771, p 138572.CrossRef
12.
Zurück zum Zitat C. Cheng, M. Wan, X.D. Wu, Z.Y. Cai, R. Zhao and B. Meng, Effect of Yield Criteria on the Formability Prediction of Dual-Phase Steel Sheets, Int. J. Mech. Sci., 2017, 133, p 28–41.CrossRef C. Cheng, M. Wan, X.D. Wu, Z.Y. Cai, R. Zhao and B. Meng, Effect of Yield Criteria on the Formability Prediction of Dual-Phase Steel Sheets, Int. J. Mech. Sci., 2017, 133, p 28–41.CrossRef
13.
Zurück zum Zitat R.P.R. Cardoso and O.B. Adetoro, A Generalisation of the Hill’s Quadratic Yield Function for Planar Plastic Anisotropy to Consider Loading Direction, Int. J. Mech. Sci., 2017, 128–129, p 253–268.CrossRef R.P.R. Cardoso and O.B. Adetoro, A Generalisation of the Hill’s Quadratic Yield Function for Planar Plastic Anisotropy to Consider Loading Direction, Int. J. Mech. Sci., 2017, 128–129, p 253–268.CrossRef
14.
Zurück zum Zitat L. Wang and T.C. Lee, The Effect of Yield Criteria on the Forming Limit Curve Prediction and the Deep Drawing Process Simulation, Int. J. Mach. Tool. Manu., 2006, 46, p 988–995.CrossRef L. Wang and T.C. Lee, The Effect of Yield Criteria on the Forming Limit Curve Prediction and the Deep Drawing Process Simulation, Int. J. Mach. Tool. Manu., 2006, 46, p 988–995.CrossRef
15.
Zurück zum Zitat D. Banabic, Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming, J. Manuf. Sci. Eng., 2016, 138, p 090901.CrossRef D. Banabic, Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming, J. Manuf. Sci. Eng., 2016, 138, p 090901.CrossRef
16.
Zurück zum Zitat Y. Lou and J.W. Yoon, Anisotropic Yield Function Based on Stress Invariants for BCC and FCC Metals and its Extension to Ductile Fracture Criterion, Int. J. Plast., 2018, 101, p 125–155.CrossRef Y. Lou and J.W. Yoon, Anisotropic Yield Function Based on Stress Invariants for BCC and FCC Metals and its Extension to Ductile Fracture Criterion, Int. J. Plast., 2018, 101, p 125–155.CrossRef
17.
Zurück zum Zitat R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. Royal Soc. Lond. (Series A), 1948, 193, p 281–297. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. Royal Soc. Lond. (Series A), 1948, 193, p 281–297.
18.
Zurück zum Zitat S. Panich, F. Barlat, V. Uthaisangsuk, S. Suranuntchai and S. Jirathearanat, Experimental and Theoretical Formability Analysis Using Strain and Stress Based Forming Limit Diagram for Advanced High Strength Steels, Mater. Des., 2013, 51, p 756–766.CrossRef S. Panich, F. Barlat, V. Uthaisangsuk, S. Suranuntchai and S. Jirathearanat, Experimental and Theoretical Formability Analysis Using Strain and Stress Based Forming Limit Diagram for Advanced High Strength Steels, Mater. Des., 2013, 51, p 756–766.CrossRef
19.
Zurück zum Zitat P.A. Eggertsen and K. Mattiasson, On Constitutive Modeling for Springback Analysis, Int. J. Mech. Sci., 2010, 52, p 804–818.CrossRef P.A. Eggertsen and K. Mattiasson, On Constitutive Modeling for Springback Analysis, Int. J. Mech. Sci., 2010, 52, p 804–818.CrossRef
20.
Zurück zum Zitat H.B. Campos, M.C. Butuc, J.J. Grácio, J.E. Rocha and J.M.F. Duarte, Theorical and Experimental Determination of the Forming Limit Diagram for the AISI 304 Stainless Steel, J. Mater. Process. Technol., 2006, 179, p 56–60.CrossRef H.B. Campos, M.C. Butuc, J.J. Grácio, J.E. Rocha and J.M.F. Duarte, Theorical and Experimental Determination of the Forming Limit Diagram for the AISI 304 Stainless Steel, J. Mater. Process. Technol., 2006, 179, p 56–60.CrossRef
21.
Zurück zum Zitat Y. Yan, H. Wang and Q. Li, The Inverse Parameter Identification of Hill 48 Yield Criterion and its Verification in Press Bending and Roll Forming Process Simulations, J. Manuf. Process., 2015, 20, p 46–53.CrossRef Y. Yan, H. Wang and Q. Li, The Inverse Parameter Identification of Hill 48 Yield Criterion and its Verification in Press Bending and Roll Forming Process Simulations, J. Manuf. Process., 2015, 20, p 46–53.CrossRef
22.
Zurück zum Zitat Q. Hu, L. Zhang, Q. Ouyang, X. Li, X. Zhu and J. Chen, Prediction of Forming Limits for Anisotropic Materials with Nonlinear Strain Paths by an Instability Approach, Int. J. Plast., 2018, 103, p 143–167.CrossRef Q. Hu, L. Zhang, Q. Ouyang, X. Li, X. Zhu and J. Chen, Prediction of Forming Limits for Anisotropic Materials with Nonlinear Strain Paths by an Instability Approach, Int. J. Plast., 2018, 103, p 143–167.CrossRef
23.
Zurück zum Zitat N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang and M.H. Seo, Fracture-Based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.CrossRef N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang and M.H. Seo, Fracture-Based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.CrossRef
24.
Zurück zum Zitat F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi and E. Chu, Plane Stress Yield Function for Aluminum Alloy Sheets-Part 1: Theory, Int. J. Plast., 2003, 19, p 1297–1319.CrossRef F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi and E. Chu, Plane Stress Yield Function for Aluminum Alloy Sheets-Part 1: Theory, Int. J. Plast., 2003, 19, p 1297–1319.CrossRef
25.
Zurück zum Zitat E.H. Lee, T.B. Stoughton and J.W. Yoon, Kinematic Hardening Model Considering Directional Hardening Response, Int. J. Plast., 2018, 110, p 145–165.CrossRef E.H. Lee, T.B. Stoughton and J.W. Yoon, Kinematic Hardening Model Considering Directional Hardening Response, Int. J. Plast., 2018, 110, p 145–165.CrossRef
26.
Zurück zum Zitat C. Butcher, F. Khameneh, A. Abedini, D. Connolly and S. Kurukuri, On the Experimental Characterization of Sheet Metal Formability and the Consistent Calibration of the MK Model for Biaxial Stretching in Plane Stress, J. Mater. Process. Technol, 2021, 287, p 116887.CrossRef C. Butcher, F. Khameneh, A. Abedini, D. Connolly and S. Kurukuri, On the Experimental Characterization of Sheet Metal Formability and the Consistent Calibration of the MK Model for Biaxial Stretching in Plane Stress, J. Mater. Process. Technol, 2021, 287, p 116887.CrossRef
27.
Zurück zum Zitat C.P. Dick and Y.P. Korkolis, Anisotropy of Thin-Walled Tubes by a New Method of Combined Tension and Shear Loading, Int. J. Plast., 2015, 71, p 87–112.CrossRef C.P. Dick and Y.P. Korkolis, Anisotropy of Thin-Walled Tubes by a New Method of Combined Tension and Shear Loading, Int. J. Plast., 2015, 71, p 87–112.CrossRef
28.
Zurück zum Zitat T. Kuwabara, T. Mori, M. Asano, T. Hakoyama and F. Barlat, Material Modeling of 6016-O and 6016–T4 Aluminum Alloy Sheets and Application to Hole Expansion Forming Simulation, Int. J. Plast., 2017, 93, p 164–186.CrossRef T. Kuwabara, T. Mori, M. Asano, T. Hakoyama and F. Barlat, Material Modeling of 6016-O and 6016–T4 Aluminum Alloy Sheets and Application to Hole Expansion Forming Simulation, Int. J. Plast., 2017, 93, p 164–186.CrossRef
29.
Zurück zum Zitat J.J. Kim, Q.T. Pham and Y.S. Kim, Thinning Prediction of Hole-Expansion Test for Dp980 Sheet Based on A Non-Associated Flow Rule, Int. J. Mech. Sci., 2021, 191, p 106067.CrossRef J.J. Kim, Q.T. Pham and Y.S. Kim, Thinning Prediction of Hole-Expansion Test for Dp980 Sheet Based on A Non-Associated Flow Rule, Int. J. Mech. Sci., 2021, 191, p 106067.CrossRef
30.
Zurück zum Zitat H. Zhang, M. Diehl, F. Roters and D. Raabe, A Virtual Laboratory Using High Resolution Crystal Plasticity Simulations to Determine the Initial Yield Surface for Sheet Metal Forming Operations, Int. J. Plast., 2016, 80, p 111–138.CrossRef H. Zhang, M. Diehl, F. Roters and D. Raabe, A Virtual Laboratory Using High Resolution Crystal Plasticity Simulations to Determine the Initial Yield Surface for Sheet Metal Forming Operations, Int. J. Plast., 2016, 80, p 111–138.CrossRef
31.
Zurück zum Zitat D. Kim, H. Kim, J.H. Kim, M.G. Lee, K.J. Kim, F. Barlat, Y. Lee and K. Chung, Modeling of Forming Limit for Multilayer Sheets Based on Strain-Rate Potentials, Int. J. Plast., 2015, 75, p 63–99.CrossRef D. Kim, H. Kim, J.H. Kim, M.G. Lee, K.J. Kim, F. Barlat, Y. Lee and K. Chung, Modeling of Forming Limit for Multilayer Sheets Based on Strain-Rate Potentials, Int. J. Plast., 2015, 75, p 63–99.CrossRef
32.
Zurück zum Zitat Y. Wang, A. Sha, X. Li, C. Jia and W. Hao, Experimental Study on the Forming Limit of GH605 Superalloy Sheet Using Digital Image Correlation, J. Mater. Eng. Perform., 2021, 30, p 1420–1429.CrossRef Y. Wang, A. Sha, X. Li, C. Jia and W. Hao, Experimental Study on the Forming Limit of GH605 Superalloy Sheet Using Digital Image Correlation, J. Mater. Eng. Perform., 2021, 30, p 1420–1429.CrossRef
33.
Zurück zum Zitat H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18.CrossRef H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18.CrossRef
34.
Zurück zum Zitat R. Hill, On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets, J. Mech. Phys. Solids, 1952, 1, p 19–30.CrossRef R. Hill, On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets, J. Mech. Phys. Solids, 1952, 1, p 19–30.CrossRef
35.
Zurück zum Zitat N. Manopulo, P. Hora, P. Peters, M. Gorji and F. Barlat, An Extended Modified Maximum Force Criterion for the Prediction of Localized Necking under Non-Proportional Loading, Int. J. Plast., 2015, 75, p 189–203.CrossRef N. Manopulo, P. Hora, P. Peters, M. Gorji and F. Barlat, An Extended Modified Maximum Force Criterion for the Prediction of Localized Necking under Non-Proportional Loading, Int. J. Plast., 2015, 75, p 189–203.CrossRef
36.
Zurück zum Zitat Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620.CrossRef Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620.CrossRef
37.
Zurück zum Zitat X. Li, Y. Chen, L. Lang and R. Xiao, A Modified M-K Method for Accurate Prediction of FLC of Aluminum Alloy, Metals, 2021, 11, p 394.CrossRef X. Li, Y. Chen, L. Lang and R. Xiao, A Modified M-K Method for Accurate Prediction of FLC of Aluminum Alloy, Metals, 2021, 11, p 394.CrossRef
38.
Zurück zum Zitat M. Nurcheshmeh and D.E. Green, Prediction of Forming Limit Curves for Nonlinear Loading Paths Using Quadratic and Non-Quadratic Yield Criteria and Variable Imperfection Factor, Mater. Des., 2016, 91, p 248–255.CrossRef M. Nurcheshmeh and D.E. Green, Prediction of Forming Limit Curves for Nonlinear Loading Paths Using Quadratic and Non-Quadratic Yield Criteria and Variable Imperfection Factor, Mater. Des., 2016, 91, p 248–255.CrossRef
40.
Zurück zum Zitat A.S. Khan and M. Baig, Anisotropic Responses, Constitutive Modeling and the Effects of Strain-Rate and Temperature on the Formability of an Aluminum Alloy, Int. J. Plast., 2011, 27, p 522–538.CrossRef A.S. Khan and M. Baig, Anisotropic Responses, Constitutive Modeling and the Effects of Strain-Rate and Temperature on the Formability of an Aluminum Alloy, Int. J. Plast., 2011, 27, p 522–538.CrossRef
41.
Zurück zum Zitat P. Dasappa, K. Inal and R. Mishra, The Effects of Anisotropic Yield Functions and Their Material Parameters on Prediction of Forming Limit Diagrams, Int. J. Solids Struct., 2012, 49, p 3528–3550.CrossRef P. Dasappa, K. Inal and R. Mishra, The Effects of Anisotropic Yield Functions and Their Material Parameters on Prediction of Forming Limit Diagrams, Int. J. Solids Struct., 2012, 49, p 3528–3550.CrossRef
42.
Zurück zum Zitat S.M. Mirfalah-Nasiri, A. Basti and R. Hashemi, Forming Limit Curves Analysis of Aluminum Alloy Considering the Through-Thickness Normal Stress, Anisotropic Yield Functions and Strain Rate, Int. J. Mech. Sci., 2016, 117, p 93–101.CrossRef S.M. Mirfalah-Nasiri, A. Basti and R. Hashemi, Forming Limit Curves Analysis of Aluminum Alloy Considering the Through-Thickness Normal Stress, Anisotropic Yield Functions and Strain Rate, Int. J. Mech. Sci., 2016, 117, p 93–101.CrossRef
43.
Zurück zum Zitat S.M. Mirfalah-Nasiri, A. Basti, R. Hashemi and A. Darvizeh, Effects of Normal and Through-Thickness Shear Stresses on the Forming Limit Curves of AA3104-H19 Using Advanced Yield Criteria, Int. J. Mech. Sci., 2018, 137, p 15–23.CrossRef S.M. Mirfalah-Nasiri, A. Basti, R. Hashemi and A. Darvizeh, Effects of Normal and Through-Thickness Shear Stresses on the Forming Limit Curves of AA3104-H19 Using Advanced Yield Criteria, Int. J. Mech. Sci., 2018, 137, p 15–23.CrossRef
44.
Zurück zum Zitat Q. Hu, X. Li and J. Chen, Forming Limit Evaluation by Considering Through-Thickness Normal Stress: Theory and Modeling, Int. J. Mech. Sci., 2019, 155, p 187–196.CrossRef Q. Hu, X. Li and J. Chen, Forming Limit Evaluation by Considering Through-Thickness Normal Stress: Theory and Modeling, Int. J. Mech. Sci., 2019, 155, p 187–196.CrossRef
45.
Zurück zum Zitat K.V. Jata, A.K. Hopkins and R.J. Rioja, The Anisotropy and Texture of Al-Li Alloys, Mater. Sci. Forum., 1996, 217–222, p 647–652.CrossRef K.V. Jata, A.K. Hopkins and R.J. Rioja, The Anisotropy and Texture of Al-Li Alloys, Mater. Sci. Forum., 1996, 217–222, p 647–652.CrossRef
46.
Zurück zum Zitat T. Kuwabara, S. Ikeda and K. Kuroda, Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet Under Biaxial Tension, J. Mater. Process. Technol., 1998, 80–81, p 517–523.CrossRef T. Kuwabara, S. Ikeda and K. Kuroda, Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet Under Biaxial Tension, J. Mater. Process. Technol., 1998, 80–81, p 517–523.CrossRef
47.
Zurück zum Zitat Y. Wang, C. Zhang, Y. Yang, G. Wang, G. Zhao and L. Chen, The Identification of Improved Johnson-Cook Constitutive Model in a Wide Range of Temperature and its Application In Predicting FLCs of Al-Mg-Li Sheet, J. Mater. Res. Technol., 2020, 9, p 3782–3795.CrossRef Y. Wang, C. Zhang, Y. Yang, G. Wang, G. Zhao and L. Chen, The Identification of Improved Johnson-Cook Constitutive Model in a Wide Range of Temperature and its Application In Predicting FLCs of Al-Mg-Li Sheet, J. Mater. Res. Technol., 2020, 9, p 3782–3795.CrossRef
48.
Zurück zum Zitat Y. Wang, C. Zhang, Y. Yang, S. Fan, G. Wang, G. Zhao and L. Chen, The Integration of Through-Thickness Normal Stress and Friction Stress in the M-K Model to Improve the Accuracy of Predicted FLCs, Int. J. Plast., 2019, 120, p 147–163.CrossRef Y. Wang, C. Zhang, Y. Yang, S. Fan, G. Wang, G. Zhao and L. Chen, The Integration of Through-Thickness Normal Stress and Friction Stress in the M-K Model to Improve the Accuracy of Predicted FLCs, Int. J. Plast., 2019, 120, p 147–163.CrossRef
Metadaten
Titel
An Investigation on the Anisotropic Plastic Behavior and Forming Limits of an Al-Mg-Li Alloy Sheet
verfasst von
Yubao Wang
Cunsheng Zhang
Yinghao Wang
Guoqun Zhao
Liang Chen
Publikationsdatum
12.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05981-0

Weitere Artikel der Ausgabe 11/2021

Journal of Materials Engineering and Performance 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.