Skip to main content
Erschienen in: Engineering with Computers 6/2022

03.08.2022 | Original Article

An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints

verfasst von: Xuan Liang, Angran Li, Anthony D. Rollett, Yongjie Jessica Zhang

Erschienen in: Engineering with Computers | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heat exchangers (HXs) have gained increasing attention due to the intensive demand of performance improving and energy saving for various equipment and machines. As a natural application, topology optimization has been involved in the structural design of HXs aiming at improving heat exchange performance (HXP) and meanwhile controlling pressure drop (PD). In this paper, a novel multiphysics-based topology optimization framework is developed to maximize the HXP for 2D cross-flow HXs, and concurrently limit the PD between the fluid inlet and outlet. In particular, an isogeometric analysis solver is developed to solve the coupled steady-state Navier–Stokes and heat convection–diffusion equations. Non-body-fitted control mesh is adopted instead of dynamically remeshing the design domain during the evolution of the boundary interface. The method of moving morphable voids is employed to represent and track boundary interface between the hot and the remaining regions. In addition, various constraints are incorporated to guarantee manufacturability of the optimized structures with respect to practical considerations in additive manufacturing, such as removing sharp corners, controlling channel perimeters, and minimizing overhangs. To implement the iterative optimization process, the method of moving asymptotes is employed. Numerical examples show that the HXP of the optimized structure is greatly improved compared with its corresponding initial design, and the PD between the fluid inlet and outlet is controlled concurrently. Moreover, a smooth boundary interface between the channel and the cold fluid, and improved manufacturability are simultaneously obtained for the optimized structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bendsœ MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetMATH Bendsœ MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetMATH
2.
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202 Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202
3.
Zurück zum Zitat Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATH Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATH
4.
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48:1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48:1031–1055MathSciNet
5.
Zurück zum Zitat Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATH Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATH
6.
Zurück zum Zitat Cheng L, Liang X, Belski E, Wang X, Sietins JM, Ludwick S, To A (2018) Natural frequency optimization of variable-density additive manufactured lattice structure: theory and experimental validation. J Manuf Sci Eng 140(10):105002 Cheng L, Liang X, Belski E, Wang X, Sietins JM, Ludwick S, To A (2018) Natural frequency optimization of variable-density additive manufactured lattice structure: theory and experimental validation. J Manuf Sci Eng 140(10):105002
7.
Zurück zum Zitat Dbouk T (2017) A review about the engineering design of optimal heat transfer systems using topology optimization. Appl Therm Eng 112:841–854 Dbouk T (2017) A review about the engineering design of optimal heat transfer systems using topology optimization. Appl Therm Eng 112:841–854
8.
Zurück zum Zitat Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Meth Eng 38:1951–1965MathSciNetMATH Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Meth Eng 38:1951–1965MathSciNetMATH
9.
Zurück zum Zitat Søndergaard MB, Pedersen CB (2014) Applied topology optimization of vibro-acoustic hearing instrument models. J Sound Vib 333(3):683–92 Søndergaard MB, Pedersen CB (2014) Applied topology optimization of vibro-acoustic hearing instrument models. J Sound Vib 333(3):683–92
10.
Zurück zum Zitat Liang X, To AC, Du J, Zhang YJ (2021) Topology optimization of phononic-like structures using experimental material interpolation model for additive manufactured lattice infills. Comput Methods Appl Mech Eng 377:113717MathSciNetMATH Liang X, To AC, Du J, Zhang YJ (2021) Topology optimization of phononic-like structures using experimental material interpolation model for additive manufactured lattice infills. Comput Methods Appl Mech Eng 377:113717MathSciNetMATH
11.
Zurück zum Zitat Qian X, Dede EM (2016) Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint. Struct Multidiscip Optim 54(3):531–551MathSciNet Qian X, Dede EM (2016) Topology optimization of a coupled thermal-fluid system under a tangential thermal gradient constraint. Struct Multidiscip Optim 54(3):531–551MathSciNet
12.
Zurück zum Zitat Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233 Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233
13.
Zurück zum Zitat Alexandersen J, Andreasen CS (2020) A review of topology optimisation for fluid-based problems. Fluids 5(1):29–32 Alexandersen J, Andreasen CS (2020) A review of topology optimisation for fluid-based problems. Fluids 5(1):29–32
14.
Zurück zum Zitat Haertel JH, Nellis GF (2017) A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers. Appl Therm Eng 119:10–24 Haertel JH, Nellis GF (2017) A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers. Appl Therm Eng 119:10–24
15.
Zurück zum Zitat Haertel JH, Engelbrecht K, Lazarov BS, Sigmund O (2018) Topology optimization of a pseudo 3D thermofluid heat sink model. Int J Heat Mass Transf 121:1073–88 Haertel JH, Engelbrecht K, Lazarov BS, Sigmund O (2018) Topology optimization of a pseudo 3D thermofluid heat sink model. Int J Heat Mass Transf 121:1073–88
16.
Zurück zum Zitat Yoon GH (2010) Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82:591–616MATH Yoon GH (2010) Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82:591–616MATH
17.
Zurück zum Zitat Yoon GH (2014) Stress-based topology optimization method for steady-state fluid–structure interaction problems. Comput Methods Appl Mech Eng 278:499–523MathSciNetMATH Yoon GH (2014) Stress-based topology optimization method for steady-state fluid–structure interaction problems. Comput Methods Appl Mech Eng 278:499–523MathSciNetMATH
18.
Zurück zum Zitat Feppon F, Allaire G, Dapogny C, Jolivet P (2020) Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing. J Comput Phys 417:109574MathSciNetMATH Feppon F, Allaire G, Dapogny C, Jolivet P (2020) Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing. J Comput Phys 417:109574MathSciNetMATH
19.
Zurück zum Zitat Lundgaard C, Sigmund O (2018) A density-based topology optimization methodology for thermoelectric energy conversion problems. Struct Multidiscip Optim 57(4):1427–1442MathSciNet Lundgaard C, Sigmund O (2018) A density-based topology optimization methodology for thermoelectric energy conversion problems. Struct Multidiscip Optim 57(4):1427–1442MathSciNet
20.
Zurück zum Zitat Kobayashi H, Yaji K, Yamasaki S, Fujita K (2019) Freeform winglet design of fin-and-tube heat exchangers guided by topology optimization. Appl Therm Eng 161:114020 Kobayashi H, Yaji K, Yamasaki S, Fujita K (2019) Freeform winglet design of fin-and-tube heat exchangers guided by topology optimization. Appl Therm Eng 161:114020
21.
Zurück zum Zitat Mohammadi MH, Abbasi HR, Yavarinasab A, Pourrahmani H (2020) Thermal optimization of shell and tube heat exchanger using porous baffles. Appl Therm Eng 170:115005 Mohammadi MH, Abbasi HR, Yavarinasab A, Pourrahmani H (2020) Thermal optimization of shell and tube heat exchanger using porous baffles. Appl Therm Eng 170:115005
22.
Zurück zum Zitat Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41:77–107MathSciNetMATH Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41:77–107MathSciNetMATH
23.
Zurück zum Zitat Gersborg HA, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30:181–192MathSciNetMATH Gersborg HA, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30:181–192MathSciNetMATH
24.
Zurück zum Zitat Challis VJ, Guest JK (2009) Level set topology optimization of fluids in stokes flow. Int J Numer Methods Eng 79:1284–1308MathSciNetMATH Challis VJ, Guest JK (2009) Level set topology optimization of fluids in stokes flow. Int J Numer Methods Eng 79:1284–1308MathSciNetMATH
25.
Zurück zum Zitat Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52:2721–2732MATH Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52:2721–2732MATH
26.
Zurück zum Zitat Coffin P, Maute K (2016) Level set topology optimization of cooling and heating devices using a simplified convection model. Struct Multidiscip Optim 53(5):985–1003 Coffin P, Maute K (2016) Level set topology optimization of cooling and heating devices using a simplified convection model. Struct Multidiscip Optim 53(5):985–1003
27.
Zurück zum Zitat Makhija DS, Beran PS (2019) Concurrent shape and topology optimization for steady conjugate heat transfer. Struct Multidisc Optim 59:919–940MathSciNet Makhija DS, Beran PS (2019) Concurrent shape and topology optimization for steady conjugate heat transfer. Struct Multidisc Optim 59:919–940MathSciNet
28.
Zurück zum Zitat Feppon F, Allaire G, Dapogny C, Jolivet P (2021) Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers. Comput Methods Appl Mech Eng 376:113638MathSciNetMATH Feppon F, Allaire G, Dapogny C, Jolivet P (2021) Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers. Comput Methods Appl Mech Eng 376:113638MathSciNetMATH
29.
Zurück zum Zitat Kobayashi H, Yaji K, Yamasaki S, Fujita K (2021) Topology design of two-fluid heat exchange. Struct Multidiscip Optim 63(2):821–834MathSciNet Kobayashi H, Yaji K, Yamasaki S, Fujita K (2021) Topology design of two-fluid heat exchange. Struct Multidiscip Optim 63(2):821–834MathSciNet
30.
Zurück zum Zitat Høghøj LC, Nørhave DR, Alexandersen J, Sigmund O, Andreasen CS (2020) Topology optimization of two fluid heat exchangers. Int J Heat Mass Transf 163:120543 Høghøj LC, Nørhave DR, Alexandersen J, Sigmund O, Andreasen CS (2020) Topology optimization of two fluid heat exchangers. Int J Heat Mass Transf 163:120543
31.
Zurück zum Zitat Fujii D, Chen B, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Methods Eng 50:2031–2051MathSciNetMATH Fujii D, Chen B, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Methods Eng 50:2031–2051MathSciNetMATH
32.
Zurück zum Zitat Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252 Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252
33.
Zurück zum Zitat Rozvany GI (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237MathSciNetMATH Rozvany GI (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237MathSciNetMATH
34.
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetMATH Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetMATH
35.
Zurück zum Zitat Zhuang Z, Xie YM, Zhou S (2021) A reaction diffusion-based level set method using body-fitted mesh for structural topology optimization. Comput Methods Appl Mech Eng 381:113829MathSciNetMATH Zhuang Z, Xie YM, Zhou S (2021) A reaction diffusion-based level set method using body-fitted mesh for structural topology optimization. Comput Methods Appl Mech Eng 381:113829MathSciNetMATH
36.
Zurück zum Zitat Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15:1031–1048MATH Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15:1031–1048MATH
37.
Zurück zum Zitat Young V, Querin OM, Steven G, Xie Y (1999) 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct Optim 18:183–192 Young V, Querin OM, Steven G, Xie Y (1999) 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct Optim 18:183–192
38.
Zurück zum Zitat Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748MathSciNetMATH Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748MathSciNetMATH
39.
Zurück zum Zitat Gai Y, Zhu X, Zhang YJ, Hou W, Hu P (2020) Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves. Struct Multidiscip Optim 61(3):963–982MathSciNet Gai Y, Zhu X, Zhang YJ, Hou W, Hu P (2020) Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves. Struct Multidiscip Optim 61(3):963–982MathSciNet
40.
Zurück zum Zitat Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference, the COMSOL Conference, Boston, USA Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference, the COMSOL Conference, Boston, USA
41.
Zurück zum Zitat Jenkins N, Maute K (2015) Level set topology optimization of stationary fluid–structure interaction problems. Struct Multidiscip Optim 52:179–195MathSciNet Jenkins N, Maute K (2015) Level set topology optimization of stationary fluid–structure interaction problems. Struct Multidiscip Optim 52:179–195MathSciNet
42.
Zurück zum Zitat Jenkins N, Maute K (2016) An immersed boundary approach for shape and topology optimization of stationary fluid–structure interaction problems. Struct Multidiscip Optim 54:1191–1208MathSciNet Jenkins N, Maute K (2016) An immersed boundary approach for shape and topology optimization of stationary fluid–structure interaction problems. Struct Multidiscip Optim 54:1191–1208MathSciNet
43.
Zurück zum Zitat Li H, Kondoh T, Jolivet P, Furuta K, Yamada T, Zhu B, Izui K, Nishiwaki S (2022) Three-dimensional topology optimization of a fluid–structure system using body-fitted mesh adaption based on the level-set method. Appl Math Model 101:276–308MathSciNetMATH Li H, Kondoh T, Jolivet P, Furuta K, Yamada T, Zhu B, Izui K, Nishiwaki S (2022) Three-dimensional topology optimization of a fluid–structure system using body-fitted mesh adaption based on the level-set method. Appl Math Model 101:276–308MathSciNetMATH
44.
Zurück zum Zitat Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC, Cheng L, Liang X, To AC (2018) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 57(6):2457–2483 Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC, Cheng L, Liang X, To AC (2018) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 57(6):2457–2483
45.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetMATH
46.
Zurück zum Zitat Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkMATH Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkMATH
47.
Zurück zum Zitat Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5–8):276–289MathSciNetMATH Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5–8):276–289MathSciNetMATH
48.
Zurück zum Zitat Casquero H, Liu L, Zhang Y, Reali A, Kiendl J et al (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Des 82:140–153MathSciNet Casquero H, Liu L, Zhang Y, Reali A, Kiendl J et al (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Des 82:140–153MathSciNet
49.
Zurück zum Zitat Casquero H, Wei X, Toshniwal D, Li A, Hughes TJR et al (2020) Seamless integration of design and Kirchhoff–Love shell analysis using analysis-suitable unstructured T-splines. Comput Methods Appl Mech Eng 360:112765MathSciNetMATH Casquero H, Wei X, Toshniwal D, Li A, Hughes TJR et al (2020) Seamless integration of design and Kirchhoff–Love shell analysis using analysis-suitable unstructured T-splines. Comput Methods Appl Mech Eng 360:112765MathSciNetMATH
50.
Zurück zum Zitat Zhang YJ, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29):2943–2959MathSciNetMATH Zhang YJ, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29):2943–2959MathSciNetMATH
51.
Zurück zum Zitat Lorenzo G, Scott MA, Tew K, Hughes TJ, Zhang YJ et al (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. PNAS 113(48):7663–7671 Lorenzo G, Scott MA, Tew K, Hughes TJ, Zhang YJ et al (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. PNAS 113(48):7663–7671
52.
Zurück zum Zitat Zhang YJ (2016) Geometric modeling and mesh generation from scanned images. CRC Press Taylor & Francis Group, Boca RatonMATH Zhang YJ (2016) Geometric modeling and mesh generation from scanned images. CRC Press Taylor & Francis Group, Boca RatonMATH
53.
Zurück zum Zitat Li A, Chai X, Yang G, Zhang YJ (2019) An isogeometric analysis computational platform for material transport simulation in complex neurite networks. Mol Cell Biomech 16(2):123–140 Li A, Chai X, Yang G, Zhang YJ (2019) An isogeometric analysis computational platform for material transport simulation in complex neurite networks. Mol Cell Biomech 16(2):123–140
54.
Zurück zum Zitat Casquero H, Bona-Casas C, Toshniwal D, Hughes TJR, Gomez H, Zhang YJ (2021) The divergence-conforming immersed boundary method: application to vesicle and capsule dynamics. J Comput Phys 425:109872MathSciNetMATH Casquero H, Bona-Casas C, Toshniwal D, Hughes TJR, Gomez H, Zhang YJ (2021) The divergence-conforming immersed boundary method: application to vesicle and capsule dynamics. J Comput Phys 425:109872MathSciNetMATH
55.
Zurück zum Zitat Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322MathSciNetMATH Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322MathSciNetMATH
56.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetMATH Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetMATH
57.
Zurück zum Zitat Casquero H, Zhang YJ, Bona-Casas C, Dalcin L, Gomez H (2018) Non-body-fitted fluid–structure interaction: divergence-conforming B-splines, fully-implicit dynamics, and variational formulation. J Comput Phys 374:625–653MathSciNetMATH Casquero H, Zhang YJ, Bona-Casas C, Dalcin L, Gomez H (2018) Non-body-fitted fluid–structure interaction: divergence-conforming B-splines, fully-implicit dynamics, and variational formulation. J Comput Phys 374:625–653MathSciNetMATH
58.
Zurück zum Zitat Lai Y, Liu L, Zhang YJ, Chen J, Fang E et al (2016) Rhino 3D to Abaqus: a T-spline based isogeometric analysis software platform. The edited volume of the modeling and simulation in science, engineering and technology book series, part IV. Springer Publisher, pp 271–281 Lai Y, Liu L, Zhang YJ, Chen J, Fang E et al (2016) Rhino 3D to Abaqus: a T-spline based isogeometric analysis software platform. The edited volume of the modeling and simulation in science, engineering and technology book series, part IV. Springer Publisher, pp 271–281
59.
Zurück zum Zitat Lai Y, Zhang YJ, Liu L, Wei X, Fang E et al (2017) Integrating CAD with Abaqus: a practical isogeometric analysis software platform for industrial applications. A special issue of HOFEIM 2016. Comput Math Appl 74(7):1648–1660MathSciNetMATH Lai Y, Zhang YJ, Liu L, Wei X, Fang E et al (2017) Integrating CAD with Abaqus: a practical isogeometric analysis software platform for industrial applications. A special issue of HOFEIM 2016. Comput Math Appl 74(7):1648–1660MathSciNetMATH
60.
Zurück zum Zitat Yu Y, Wei X, Li A, Liu JG, He J et al (2020) HexGen and Hex2Spline: polycube-based hexahedral mesh generation and unstructured spline construction for isogeometric analysis framework in LS-DYNA. Springer INdAM Serie: proceedings of INdAM Workshop “Geometric Challenges in Isogeometric Analysis” Yu Y, Wei X, Li A, Liu JG, He J et al (2020) HexGen and Hex2Spline: polycube-based hexahedral mesh generation and unstructured spline construction for isogeometric analysis framework in LS-DYNA. Springer INdAM Serie: proceedings of INdAM Workshop “Geometric Challenges in Isogeometric Analysis”
61.
Zurück zum Zitat Yu Y, Liu JG, Zhang YJ (2021) HexDom: polycube-based hexahedral dominant mesh generation. The edited volume of mesh generation and adaptation: cutting-edge techniques, SEMA-SIMAI Springer Series Yu Y, Liu JG, Zhang YJ (2021) HexDom: polycube-based hexahedral dominant mesh generation. The edited volume of mesh generation and adaptation: cutting-edge techniques, SEMA-SIMAI Springer Series
62.
Zurück zum Zitat An Z, Yu T, Bui TQ, Wang C, Trinh NA (2018) Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis. Adv Eng Soft 116:36–49 An Z, Yu T, Bui TQ, Wang C, Trinh NA (2018) Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis. Adv Eng Soft 116:36–49
63.
Zurück zum Zitat Dede L, Borden MJ, Hughes TJR (2012) Topology optimization with isogeometric analysis in a phase field approach. Arch Comput Methods Eng 19(3):427–65MathSciNetMATH Dede L, Borden MJ, Hughes TJR (2012) Topology optimization with isogeometric analysis in a phase field approach. Arch Comput Methods Eng 19(3):427–65MathSciNetMATH
64.
Zurück zum Zitat Jahangiry HA, Tavakkoli SM (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257MathSciNetMATH Jahangiry HA, Tavakkoli SM (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257MathSciNetMATH
65.
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATH Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATH
66.
Zurück zum Zitat Svanberg K (1993) The method of moving asymptotes (MMA) with some extensions. Optimization of Large Structural Systems. Springer, Dordrecht, pp 555–566 Svanberg K (1993) The method of moving asymptotes (MMA) with some extensions. Optimization of Large Structural Systems. Springer, Dordrecht, pp 555–566
67.
Zurück zum Zitat Zhao X, Zhou M, Liu Y, Ding M, Hu P, Zhu P (2019) Topology optimization of channel cooling structures considering thermomechanical behavior. Struct Multidiscip Optim 59:613–632MathSciNet Zhao X, Zhou M, Liu Y, Ding M, Hu P, Zhu P (2019) Topology optimization of channel cooling structures considering thermomechanical behavior. Struct Multidiscip Optim 59:613–632MathSciNet
68.
Zurück zum Zitat Wei X, Zhang YJ, Liu L, Hughes TJR (2017) Truncated T-splines: fundamentals and methods. Comput Methods Appl Mech Eng Spec Issue Isogeom Anal 316:349–372MathSciNetMATH Wei X, Zhang YJ, Liu L, Hughes TJR (2017) Truncated T-splines: fundamentals and methods. Comput Methods Appl Mech Eng Spec Issue Isogeom Anal 316:349–372MathSciNetMATH
69.
Zurück zum Zitat Wei X, Zhang YJ, Hughes TJR (2017) Truncated hierarchical tricubic C0 spline construction on unstructured hexahedral meshes for isogeometric analysis applications. Comput Methods Appl Mech Eng 74(9):2203–2220MATH Wei X, Zhang YJ, Hughes TJR (2017) Truncated hierarchical tricubic C0 spline construction on unstructured hexahedral meshes for isogeometric analysis applications. Comput Methods Appl Mech Eng 74(9):2203–2220MATH
70.
Zurück zum Zitat Wei X, Zhang YJ, Toshniwal D, Speleers H, Li X et al (2018) Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis. Comput Methods Appl Mech Eng 341:609–639MathSciNetMATH Wei X, Zhang YJ, Toshniwal D, Speleers H, Li X et al (2018) Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis. Comput Methods Appl Mech Eng 341:609–639MathSciNetMATH
71.
Zurück zum Zitat Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Karpeyev D et al (2019) PETSC users manual tech Rep ANL-95/11-Revision 3.11. Argonne National Laboratory Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Karpeyev D et al (2019) PETSC users manual tech Rep ANL-95/11-Revision 3.11. Argonne National Laboratory
72.
Zurück zum Zitat Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding. Comput Methods Appl Mech Engrg 193:1367–1383MathSciNetMATH Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes—application to vortex shedding. Comput Methods Appl Mech Engrg 193:1367–1383MathSciNetMATH
73.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A et al (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1):173–201MathSciNetMATH Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A et al (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1):173–201MathSciNetMATH
74.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259MathSciNetMATH Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259MathSciNetMATH
75.
Zurück zum Zitat Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods, in Encyclopedia of computational mechanics, computational fluid dynamics, vol 3 (chapter 4). Wiley, New York Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods, in Encyclopedia of computational mechanics, computational fluid dynamics, vol 3 (chapter 4). Wiley, New York
76.
Zurück zum Zitat Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkens-Diehr N (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74 Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkens-Diehr N (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74
Metadaten
Titel
An isogeometric analysis-based topology optimization framework for 2D cross-flow heat exchangers with manufacturability constraints
verfasst von
Xuan Liang
Angran Li
Anthony D. Rollett
Yongjie Jessica Zhang
Publikationsdatum
03.08.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 6/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01716-4

Weitere Artikel der Ausgabe 6/2022

Engineering with Computers 6/2022 Zur Ausgabe

Neuer Inhalt