Skip to main content
Erschienen in: Computational Mechanics 5/2019

11.09.2018 | Original Paper

An oil sloshing study: adaptive fixed-mesh ALE analysis and comparison with experiments

verfasst von: Ernesto Castillo, Marcela A. Cruchaga, Joan Baiges, José Flores

Erschienen in: Computational Mechanics | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report in this work a numerical analysis of the sloshing of a squared tank partially filled with a domestic vegetable oil. The tank is subject to controlled motions with a shake table. The free-surface evolution is captured using ultrasonic sensors and an image capturing method. Only confirmed data within the error range is reported. Filling depth, imposed amplitude and frequency effects on the sloshing wave pattern are specifically evaluated. The experiments also reveal the nonlinear wave behavior. The numerical model is based on a stabilized finite element method of the variational multi-scale type. The free-surface is captured using a level set technique developed to be used with adaptive meshes in Arbitrary Lagrangian–Eulerian framework. The numerical results are compared with the experiments for different sloshing conditions near the first sloshing mode. The simulations satisfactorily match the experiments, providing a reliable tool for the analysis of this kind of problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
8.
Zurück zum Zitat Escobar A, Celentano D, Cruchaga M, Lacaze J, Schulz B, Dardati P, Parada A (2014) Experimental and numerical analysis of effect of cooling rate on thermal-microstructural response of spheroidal graphite cast iron solidification. Int J Cast Met Res 27(3):176–186CrossRef Escobar A, Celentano D, Cruchaga M, Lacaze J, Schulz B, Dardati P, Parada A (2014) Experimental and numerical analysis of effect of cooling rate on thermal-microstructural response of spheroidal graphite cast iron solidification. Int J Cast Met Res 27(3):176–186CrossRef
12.
Zurück zum Zitat Tezduyar T (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefMATH Tezduyar T (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefMATH
13.
Zurück zum Zitat Tezduyar T (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195:2983–3000MathSciNetCrossRefMATH Tezduyar T (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195:2983–3000MathSciNetCrossRefMATH
14.
Zurück zum Zitat Huerta A, Liu W (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69(3):277–324CrossRefMATH Huerta A, Liu W (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69(3):277–324CrossRefMATH
16.
Zurück zum Zitat Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MathSciNetCrossRefMATH Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351MathSciNetCrossRefMATH
17.
Zurück zum Zitat Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MathSciNetCrossRefMATH Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371MathSciNetCrossRefMATH
18.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155:235–248CrossRefMATH Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155:235–248CrossRefMATH
19.
Zurück zum Zitat Tezduyar T, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190:403–410CrossRefMATH Tezduyar T, Aliabadi S (2000) EDICT for 3D computation of two-fluid interfaces. Comput Methods Appl Mech Eng 190:403–410CrossRefMATH
25.
Zurück zum Zitat Akyildız H, Erdem Ünal N (2006) Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Eng 33(16):2135–2149CrossRef Akyildız H, Erdem Ünal N (2006) Sloshing in a three-dimensional rectangular tank: numerical simulation and experimental validation. Ocean Eng 33(16):2135–2149CrossRef
26.
Zurück zum Zitat Cruchaga M, Celentano D, Tezduyar T (2007) Collapse of a liquid column: numerical simulation and experimental validation. Comput Mech 39(4):453–476CrossRefMATH Cruchaga M, Celentano D, Tezduyar T (2007) Collapse of a liquid column: numerical simulation and experimental validation. Comput Mech 39(4):453–476CrossRefMATH
27.
Zurück zum Zitat Liu D, Lin P (2008) A numerical study of three-dimensional liquid sloshing in tanks. J Comput Phys 227(8):3921–3939CrossRefMATH Liu D, Lin P (2008) A numerical study of three-dimensional liquid sloshing in tanks. J Comput Phys 227(8):3921–3939CrossRefMATH
28.
Zurück zum Zitat Cruchaga M, Celentano D, Tezduyar T (2009) Computational modeling of the collapse of a liquid column over an obstacle and experimental validation. J Appl Mech 76(2):021202CrossRef Cruchaga M, Celentano D, Tezduyar T (2009) Computational modeling of the collapse of a liquid column over an obstacle and experimental validation. J Appl Mech 76(2):021202CrossRef
29.
Zurück zum Zitat Eswaran M, Singh A, Saha U (2011) Experimental measurement of the surface velocity field in an externally induced sloshing tank. Proc Inst Mech Eng Part M J Eng Marit Environ 225(2):133–148 Eswaran M, Singh A, Saha U (2011) Experimental measurement of the surface velocity field in an externally induced sloshing tank. Proc Inst Mech Eng Part M J Eng Marit Environ 225(2):133–148
30.
Zurück zum Zitat Cruchaga M, Löhner R, Celentano D (2012) Spheres falling into viscous flows: experimental and numerical analysis. Int J Numer Methods Fluid 69(9):1496–1521CrossRef Cruchaga M, Löhner R, Celentano D (2012) Spheres falling into viscous flows: experimental and numerical analysis. Int J Numer Methods Fluid 69(9):1496–1521CrossRef
31.
Zurück zum Zitat Battaglia L, Cruchaga M, Storti M, D’Elía J, Aedo JN, Reinoso R (2018) Numerical modelling of 3D sloshing experiments in rectangular tanks. Appl Math Model 59:357–378MathSciNetCrossRef Battaglia L, Cruchaga M, Storti M, D’Elía J, Aedo JN, Reinoso R (2018) Numerical modelling of 3D sloshing experiments in rectangular tanks. Appl Math Model 59:357–378MathSciNetCrossRef
34.
Zurück zum Zitat Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetMATH Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetMATH
35.
Zurück zum Zitat Behr MA, Franca LP, Tezduyar TE (1993) Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput Methods Appl Mech Eng 104(1):31–48MathSciNetCrossRefMATH Behr MA, Franca LP, Tezduyar TE (1993) Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput Methods Appl Mech Eng 104(1):31–48MathSciNetCrossRefMATH
36.
Zurück zum Zitat Cruchaga M, Oñate E (1997) A finite element formulation for incompressible flow problems using a generalized streamline operator. Comput Methods Appl Mech Eng 143(1):49–67MathSciNetCrossRefMATH Cruchaga M, Oñate E (1997) A finite element formulation for incompressible flow problems using a generalized streamline operator. Comput Methods Appl Mech Eng 143(1):49–67MathSciNetCrossRefMATH
37.
Zurück zum Zitat Tezduyar T (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetCrossRefMATH Tezduyar T (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetCrossRefMATH
38.
Zurück zum Zitat Cruchaga MA, Oñate E (1999) A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces. Comput Methods Appl Mech Eng 173(1–2):241–255CrossRefMATH Cruchaga MA, Oñate E (1999) A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces. Comput Methods Appl Mech Eng 173(1–2):241–255CrossRefMATH
39.
Zurück zum Zitat Corsini A, Rispoli F, Santoriello A, Tezduyar T (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364MathSciNetCrossRefMATH Corsini A, Rispoli F, Santoriello A, Tezduyar T (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364MathSciNetCrossRefMATH
40.
Zurück zum Zitat Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22(supp02):1230002CrossRefMATH Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22(supp02):1230002CrossRefMATH
41.
Zurück zum Zitat Hughes TJ, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method–a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1–2):3–24MathSciNetCrossRefMATH Hughes TJ, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method–a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1–2):3–24MathSciNetCrossRefMATH
46.
Zurück zum Zitat Tezduyar T, Park Y (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325CrossRefMATH Tezduyar T, Park Y (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325CrossRefMATH
47.
Zurück zum Zitat Aliabadi S, Tezduyar T (2000) Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 190:243–261CrossRefMATH Aliabadi S, Tezduyar T (2000) Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 190:243–261CrossRefMATH
48.
Zurück zum Zitat Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the supg stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193(21–22):1909–1922CrossRefMATH Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the supg stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193(21–22):1909–1922CrossRefMATH
49.
Zurück zum Zitat Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36(2):191–206MathSciNetCrossRefMATH Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36(2):191–206MathSciNetCrossRefMATH
50.
Zurück zum Zitat Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196(21–24):2413–2430MathSciNetCrossRefMATH Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196(21–24):2413–2430MathSciNetCrossRefMATH
52.
Zurück zum Zitat Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159CrossRefMATH Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159CrossRefMATH
53.
55.
Zurück zum Zitat Battaglia L, Storti M, D’Elía J (2010) Bounded renormalization with continuous penalization for level set interface-capturing methods. Int J Numer Methods Eng 84(7):830–848MathSciNetCrossRefMATH Battaglia L, Storti M, D’Elía J (2010) Bounded renormalization with continuous penalization for level set interface-capturing methods. Int J Numer Methods Eng 84(7):830–848MathSciNetCrossRefMATH
56.
Zurück zum Zitat Ausas R, Dari E, Buscaglia G (2011) A geometric mass-preserving redistancing scheme for the level set function. Int J Numer Methods Fluids 65(8):989–1010CrossRefMATH Ausas R, Dari E, Buscaglia G (2011) A geometric mass-preserving redistancing scheme for the level set function. Int J Numer Methods Fluids 65(8):989–1010CrossRefMATH
59.
Zurück zum Zitat Faltinsen O, Rognebakke O, Lukovsky I, Timokha A (2000) Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J Fluid Mech 407:201–234MathSciNetCrossRefMATH Faltinsen O, Rognebakke O, Lukovsky I, Timokha A (2000) Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J Fluid Mech 407:201–234MathSciNetCrossRefMATH
62.
Zurück zum Zitat OpenCV (2017) The OpenCV Reference manual. On line access: opencv.org OpenCV (2017) The OpenCV Reference manual. On line access: opencv.org
Metadaten
Titel
An oil sloshing study: adaptive fixed-mesh ALE analysis and comparison with experiments
verfasst von
Ernesto Castillo
Marcela A. Cruchaga
Joan Baiges
José Flores
Publikationsdatum
11.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1633-2

Weitere Artikel der Ausgabe 5/2019

Computational Mechanics 5/2019 Zur Ausgabe

Neuer Inhalt